Micromechanical Modeling of **Cortical Bone and Synthetic Biocomposites**

Ryan K. Roeder

Department of Aerospace and Mechanical Engineering **Bioengineering Graduate Program** University of Notre Dame, Notre Dame, IN 46556

http://www.nd.edu/~amebio

Imagine a Structural Material...

- with high strength to weight ratio.
- with a fatigue life of tens of millions of cycles.
- with microstructure and properties that adapt to the magnitude and direction of loading.
- with the ability to heal cracks and fractures.
- with infinite value added (provided at no 'cost,' but 'priceless' to replace).
 - 1.5 million osteoporosis-related fractures occur annually.

Osteoporosis costs Americans \$38 million each day.

Stress fractures cost the Army \$10 million annually.

Mechanical Properties of Bone vs. Biomaterials

http://www.nd.edu/~amebio

AME

Hierarchical Structure of Bone Tissue

J-Y. Rho, et al., Med. Eng. Phys., 1998.

Hydroxyapatite Crystal Structure

Bone Mineral

- calcium deficient
- highly substituted
- low crystallinity

Adapted from Young and Elliott, Archs. Oral. Biol., 1966.

Preferred Orientation of Bone Mineral

Roeder, et al., J. Biomed. Mater. Res., 2003.

Preferred Orientation of Bone Mineral

W. Yue and R.K. Roeder, 2006.

Preferred Orientation of Bone Mineral

AME

F

http://www.nd.edu/~amebio

W. Yue and R.K. Roeder, 2006.

Hierarchical Structure of Bone Tissue

Adapted from R.K. Roeder, et al., JOM, 2008.

http://www.nd.edu/~amebio

consider 3 factors:

1) contributions of each phase

HA:
$$C_{HA} = \begin{bmatrix} 137 & 42.5 & 54.9 & 0 & 0 & 0 \\ 42.5 & 137 & 54.9 & 0 & 0 & 0 \\ 54.9 & 54.9 & 172 & 0 & 0 & 0 \\ 0 & 0 & 0 & 39.6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 39.6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 47.25 \end{bmatrix}$$
 GPa $\begin{array}{c} E_{HA,L} = 138.9 \text{ GPa} \\ E_{HA,T} = 113.6 \text{ GPa} \\ G_{HA,LT} = 39.5 \text{ GPa} \\ v_{HA,LT} = 0.25 \text{ GPa} \end{array}$

J.L. Katz and K. Ukraincik, J. Biomechanics, 1971.

HDPE: $E_p = 1.1 \text{ GPa}$ $G_p = 0.4 \text{ GPa}$ $v_p = 0.4$ Collagen: $E_p = 1.1 \text{ GPa}$ $G_p = 0.4 \text{ GPa}$ $v_p = 0.4$

1) contributions of each phase

Voigt (upper bound)

Reuss (lower bound)

 $\boldsymbol{a}_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & \sin(\theta) \\ 0 & -\sin(\theta) & \cos(\theta) \end{bmatrix}$

 $T_{\varepsilon} = \left[T_{\sigma}^{T}\right]^{-1}$

NIVERSITY OF

http://www.nd.edu/~amebio

$$\overline{E}_{V} = \overline{E}_{HA,L} \cdot V_{HA} + E_{p} \cdot (1 - V_{HA}) \qquad \overline{E}_{R} = \frac{\overline{E}_{HA,T} \cdot E_{p}}{\overline{E}_{HA,T} \cdot (1 - V_{HA}) + E_{p} \cdot V_{HA}}$$

$$\overline{E}_{HA,L} = \left[\left[\frac{\sum_{\theta} \left(T_{\sigma} \cdot C \cdot T_{\sigma}^{T} \right) \cdot f(\theta)}{\sum_{\theta} f(\theta)} \right]_{33}^{-1} \right]_{33}^{-1} \qquad \checkmark \qquad \overline{E}_{HA,T} = \left[\frac{\sum_{\theta} \left(T_{\varepsilon} \cdot S \cdot T_{\varepsilon}^{T} \right)_{11} \cdot f(\theta)}{\sum_{\theta} f(\theta)} \right]_{-1}^{-1}$$

where,

$$T_{\sigma} = \begin{bmatrix} a_{11}^2 & a_{12}^2 & a_{13}^2 & 2a_{12}a_{13} & 2a_{11}a_{13} & 2a_{11}a_{12} \\ a_{21}^2 & a_{22}^2 & a_{23}^2 & 2a_{22}a_{23} & 2a_{21}a_{23} & 2a_{21}a_{22} \\ a_{31}^2 & a_{32}^2 & a_{33}^2 & 2a_{32}a_{33} & 2a_{31}a_{33} & 2a_{31}a_{32} \\ a_{21}a_{31} & a_{22}a_{32} & a_{23}a_{33} & a_{22}a_{33} + a_{23}a_{32} & a_{31} + a_{21}a_{33} & a_{31}a_{22} + a_{21}a_{32} \\ a_{11}a_{31} & a_{12}a_{32} & a_{13}a_{33} & a_{13}a_{32} + a_{12}a_{33} & a_{11}a_{33} + a_{13}a_{31} & a_{11}a_{32} + a_{12}a_{31} \\ a_{11}a_{21} & a_{12}a_{22} & a_{13}a_{23} & a_{12}a_{23} + a_{13}a_{22} & a_{11}a_{23} + a_{13}a_{21} & a_{11}a_{22} + a_{12}a_{21} \end{bmatrix}$$

consider 3 factors:

1) contributions of each phase (HA and polymer or collagen)

Voigt (upper bound) $\mathbf{M}_{\mathbf{V}}$ Reuss (lower bound)

2) morphology of reinforcements

using the Halpin-Tsai Equations

representative volume element (RVE)

aspect ratio, $R = \frac{\text{length}}{\text{thickness}}$

2) morphology of reinforcements (Halpin-Tsai Equations)

$$E_{L} = E_{p} \frac{1 + \zeta \cdot \eta \cdot V_{HA}}{1 - \eta \cdot V_{HA}} \quad \text{where} \quad \eta = \frac{E_{HA,L}}{E_{p}} - 1 / \frac{E_{HA,L}}{E_{p}} + \zeta \qquad \zeta = 2 \cdot R + 40 \cdot V_{HA}^{10}$$

$$E_{T} = E_{p} \frac{1 + \zeta \cdot \eta \cdot V_{HA}}{1 - \eta \cdot V_{HA}} \quad \text{where} \quad \eta = \frac{E_{HA,T}}{E_{p}} - 1 / \frac{E_{HA,T}}{E_{p}} + \zeta \qquad \zeta = 2 + 40 \cdot V_{HA}^{10}$$

$$G_{LT} = G_{p} \frac{1 + \zeta \cdot \eta \cdot V_{HA}}{1 - \eta \cdot V_{HA}} \quad \text{where} \quad \eta = \frac{G_{HA,LT}}{G_{p}} - 1 / \frac{G_{HA,LT}}{G_{p}} + \zeta \qquad \zeta = 1 + 40 \cdot V_{HA}^{10}$$

$$v_{LT} = v_{HA,LT} \cdot V_{HA} + v_{p} \cdot (1 - V_{HA}) \qquad v_{T} \approx 1 - (E_{T}/G_{T})$$

J.C. Halpin, *Primer on Composite Materials Analysis*, 2nd Ed., 1992.

3) preferred orientation of the reinforcements

representative volume element (RVE)

weight the contribution of each misorientation by an ODF, $g(\theta)$

3) preferred orientation of reinforcements (simulated ODFs)

http://www.nd.edu/~amebio

3) preferred orientation of reinforcements

$$\bar{E}_{L} = \frac{\int_{\Theta} g(\theta) \cdot E_{L}(\theta) \cdot d\theta}{\int_{\Theta} g(\theta) \cdot d\theta}$$

$$E_{L}(\theta) = \left[T_{\varepsilon} \cdot S_{RVE} \cdot T_{\varepsilon}^{T}\right]_{33}^{-1} \qquad S_{RVE} = \begin{bmatrix}\frac{1}{E_{T}} \frac{-v_{T}}{E_{T}} \frac{-v_{LT}}{E_{L}} & 0 & 0 & 0\\ \frac{-v_{T}}{E_{T}} \frac{1}{E_{T}} \frac{-v_{LT}}{E_{L}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{G_{LT}} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1}{G_{LT}} & 0\\ 0 & 0 & 0 & 0 & \frac{1}{G_{LT}} & 0\\ 0 & 0 & 0 & 0 & \frac{2 \cdot (1+v_{T})}{E_{T}}\end{bmatrix}^{-1}$$

$$Or \quad E_{L}(\theta) = \left[\frac{\cos^{4}(\theta)}{E_{L}} + \frac{\sin^{4}(\theta)}{E_{T}} + \sin^{2}(\theta) \cdot \cos^{2}(\theta) \cdot \left(\frac{1}{G_{LT}} - \frac{2 \cdot v_{LT}}{E_{L}}\right)\right]^{-1}$$

Comparison to data for cortical bone and HA-PE composites.

http://www.nd.edu/~amebio

HA Whisker Reinforced HDPE

Yue and Roeder, J. Mater. Res., 2006.

HA Whisker Reinforced HDPE

Yue and Roeder, J. Mater. Res., 2006.

HA Whisker Reinforced HDPE

Yue and Roeder, J. Mater. Res., 2006.

Hierarchical Structure of Bone Tissue

Adapted from R.K. Roeder, et al., JOM, 2008.

http://www.nd.edu/~amebio

Phase	Parameter	Value(s)	Reference
Apatite Crystals	Elastic Constants (transversely isotropic)	$C_{11} = 137 \text{ GPa}$ $C_{33} = 172 \text{ GPa}$ $C_{12} = 42.5 \text{ GPa}$ $C_{13} = 54.9 \text{ GPa}$ $C_{44} = 39.6 \text{ GPa}$	Katz and Ukraincik, 1971
	ODF	measured	
	Volume Fraction	measured	
	Mean Aspect Ratio	20	Eppel <i>et al</i> ., 2001
Collagen	Elastic Constants (isotropic)	C ₁₁ = 3.9 GPa C ₁₂ = 1.1 GPa	Sasaki and Odajima, 1996
	Volume Fraction	measured	
Haversion Porosity	Aspect Ratio	60	Sevostianov and Kachanov, 2000
	Volume Fraction	measured	

 $\overline{E}_{ij}(\theta) = \frac{\int g(\theta) \cdot E_{ij}(\theta) \cdot d\theta}{I_{ij}(\theta) - I_{ij}(\theta)}$

Deuerling, et al., J. Biomechanics, 2009.

 $g(\theta) \cdot d\theta$

http://www.nd.edu/~amebio

ERSITYOF

ΗĒ

H

	Anisotropy Ratio
Experimental Data	1.56 (0.14)
Model (measured ODF)	1.41 (0.07)
Model (randomly oriented crystals)	1.09 (0.02)
Model (perfectly aligned crystals)	4.27 (0.15)

