

The Critical Thickness and Fracture Toughness of Thin Metal-Organic Precursor Films

- optical interference technique for measuring h_c
- processing effects on h_c
- relating h_c to film fracture toughness

Adapted from:

R.K. Roeder and E.B. Slamovich, "Measuring the critical thickness of thin metal-organic precursor films," *J. Mater. Res.*, **14** [6] 2364-2368 (1999).

R.K. Roeder and E.B. Slamovich, "Assessment of the Critical Thickness and Fracture Toughness of Thin Metal-Organic Precursor Films," *Ceram. Trans.*, **83**, 375-382 (1998).

* Kraton D1102C, stryrene-butadiene-styrene block co-polymer, added in wt% relative to the precursor.

Spin Coating

Crack Initiation and Growth

TIBE - 50 vol% toluene - no polymer

Film Thickness Profile After Spin Coating

TIBE - 50 vol% toluene - no polymer

Crack Initiation and Growth TIBE - 50 vol% toluene - no polymer

Film Cracking After 90 h Drying

TIBE

+ 5 wt% polymer

TIBE + 50 vol% toluene

+ 10 wt% polymer

Film Cracking After 90 h Drying

TIBE

+ 5 wt% polymer

20 µm

TIBE + 50 vol% toluene

+ 10 wt% polymer

Optical Interference

- h = film thickness
- *n* = film refractive index
- λ = wavelength of light
- ϕ = angle of incidence
- θ = angle of refraction

m = wave order

- if refractive index of substrate > film > air: path difference = $2h(\mathbf{n}^2 - \sin^2\phi)^{1/2}$
- for light normal to film ($\phi = 0^{\circ}$): constructive interference, $m \cdot \lambda = 2\mathbf{n} \cdot h$ retardation, $\delta = 2\mathbf{n} \cdot h$ film thickness, $h = m \cdot \lambda/2\mathbf{n} = \delta/2\mathbf{n}$

Isochromatic Color Fringe Chart

Calculated using n = 1.522 for TIBE.

т	color fringe	δ (nm)	<i>h</i> (µm)	m	color fringe	δ (nm)	<i>h</i> (µm)
1	black	0	0.000	3	blue	1150	0.378
	iron gray	50	0.016		blue green	1250	0.411
	gray	100	0.033		green	1350	0.443
	gray blue	160	0.053		yellow green	1400	0.460
	white	260	0.085		yellow	1450	0.476
	yellow	330	0.108		rose red	1500	0.493
	yellow brown	440	0.145		carmine	1550	0.509
	orange red	500	0.164		violet gray	1650	0.542
	red	540	0.177	4	blue gray	1700	0.558
2	violet	580	0.191		blue green	1750	0.575
	blue	680	0.223		green brown	1800	0.591
	blue green	720	0.237		pale green	1900	0.624
	green	750	0.246		pale gray	2000	0.657
	yellow green	840	0.276		pale red violet	2200	0.723
	yellow	920	0.302	5	pale green	2500	0.821
	orange red	1000	0.329		pink	2700	0.887
	violet red	1050	0.345		and so on		
	violet	1100	0.361				

Critical Thickness of Precursor Films								
	 Define h_c as the film thickness where cracks neither initiate nor propagate. 							
 Utilize film thickness variations. 								
 Measure h_c from the color fringe where propagating cracks arrest. 								
solvent	polymer (wt%)	nearest observed fringe color	т	h _c (μm)				
none	0	yellow	1	0.10 ± 0.01				
toluene	0	yellow	1	0.11 ± 0.01				
toluene	5	5 red		0.51 ± 0.05				
toluene	10	pink/pale green	5/6	0.92 ± 0.09				

Film Thickness Measurement Using Isochromatic Color Fringes from Reflected Light

advantages:

- simple, requires conventional optical microscope
- "contour map" of film thickness
- simultaneous observation of cracking and film thickness

disadvantages:

- must know refractive index of film
- up to 10% error

Sources of Error in *h_c* Measurement

assumptions:

- no light absorption by film or substrate (phase shift on reflection of exactly 0 or $\lambda/2$)
- constant \boldsymbol{n} with time, λ and polymer addition
- light incident normal to film surface

Error increases with increasing objective lens numerical aperture (higher magnification).

NA = 0.4 - 0.8several % error in hNA ≥ 0.9 up to 10% error in h

Relating *h_c* to Fracture Toughness

 $h_{c} = \left(\frac{K_{c}}{\sigma \cdot \Omega}\right)^{2} \qquad \begin{array}{l} h_{c} = \text{critical film thickness} \\ K_{c} = \text{critical stress intensity factor} \\ \text{where } \Omega \propto \sqrt{\pi \cdot (E_{f}/E_{s})} \end{array}$

A.G. Evans, *et al.*, *J. Mater. Res.*, **3** [5] 1043-1049 (1988). M.S. Hu and A.G. Evans, *Acta Metall.*, **37** [3] 917-925 (1989).

Therefore, a measure of the film stress is needed:

- Measure substrate curvature using ellipsometry or laser techniques.
- Measure mass loss during drying.
 - \Rightarrow Calculate volume shrinkage.

 \Rightarrow Calculate linear strain.

 \Rightarrow Calculate film stress assuming linear elasticity.

Film Mass Loss

Origin of Mass Loss: FT-IR

e.g., TIBE - 50 vol% toluene - no polymer

Origin of Mass Loss: Relative Volatility

molecule	boiling point (°C)
toluene	111
<i>p</i> -xylene	138
ethyl acetoacetone	181
TIBE 1 titanium isopropoxide	232
neodecanoic acid ر	250-257
נוטטיע titanium methoxide	>300

Estimation of Film Stress From Mass Loss

 \Rightarrow Convert measured film *mass*(*t*) to film *volume*(*t*).

Relative Film Stress

Summary

- The cracking and thickness of thin metal-organic precursor films were simultaneously observed during drying using a conventional optical microscope.
- Film thickness was monitored using isochromatic color fringes produced by interference of reflected white light.
- The critical film thickness was determined by the color fringe corresponding to the location where cracks arrested.
- The addition of small amounts of an elastomeric polymer to precursor solutions increased the critical film thickness by toughening films.
- Combining the critical thickness measurement technique with stress measurements could allow precise measurement of thin film fracture toughness.

Fracture of Materials Can be Artistic!

