Homework #2 Due: 9/8/20

- 1. (25) Consider a case of heterogeneous nucleation during solidification of particles where the contact angle θ = 100°. A chemical is added to the melt which reduces γ_{sl} by a factor of two, but does not affect either γ_{ml} or γ_{sm} . For the same amount of undercooling, does the chemical additive cause ΔG^*_{het} to increase or decrease? Use a calculation to justify your answer taking into account changes in both the shape factor $S(\theta)$ and ΔG^*_{hom} .
- 2. (25) Calculate the critical nuclei size, r^* , for the homogeneous precipitation of BaSO₄ from aqueous solution. Assume that precipitation occurs at a supersaturation of 2 at 25°C, and $\gamma_{sl} = 0.116 \text{ J/m}^2$.
- (25) BaSO₄ particle suspensions are used clinically as a gastrointestinal contrast agent for radiography or computed tomography. The solubility product for BaSO₄ is 1.08×10⁻¹⁰ at 25°C. Will barium sulfate precipitate if 10.0 mL of 0.0020 M Na₂SO₄ is added to 100 mL of 3.2×10⁻⁴ M BaCl₂? Note that NaCl is highly soluble in water.
- 4. (25) Write balanced reaction equations for the hydrothermal synthesis of: (a) Calcium hydroxyapatite, Ca₅(PO₄)₃OH, from Ca(OH)₂ and H₃PO₄, and (b) Ba_xSr_{1-x}TiO₃ from BaCl₂·2H₂O, SrCl₂·6H₂O, TiO₂, and NaOH. (c) In (b), what is the role of NaOH? (d) Is it realistic to think that particle of TiO₂(s) can be directly converted into Ba_xSr_{1-x}TiO₃(s)? If not what intermediates might you expect?