Au NP Characterization

Cole et al., Nanomedicine, 2015

UNIVERSITY OF NOTRE DAME http://www.nd.edu/~bioeng

TEM vs. XRD of HfO₂ Nanoparticle Size

Temperature (°C)	XRD	TEM	
	Crystallite Size (nm)	Diameter (nm)	Aspect Ratio
500	7.2 (0.8) ^a	7.4 (1.6) ^a	1.3 (0.2) ^{a,b}
575	8.4 (1.0) ^a	9.1 (2.3) ^a	1.3 (0.2) ^a
650	12.3 (1.0) ^b	12.5 (3.2) ^b	1.2 (0.2) ^b
800	21.2 (2.0) ^c	22.5 (5.6) ^c	1.2 (0.1) ^b
950	32.8 (1.3) ^d	31.0 (8.2) ^d	1.2 (0.1) ^{a,b}

McGinnity et al., Nanoscale, 2016

X-Ray Diffraction (XRD)

used predominately in inorganic crystalline materials to determine:

- phase identification (crystal structure)
- composition (phase fractions)
- crystal size —
- lattice parameters
- crystal orientation (texture analysis)
- residual stresses

x-ray source: Cu K α radiation (λ = 1.54 Å)

- monochromatic
- parallel
- coherent (in phase)

constructive interference requires: $n \cdot \lambda = 2z$ where $z = d \cdot \sin \theta$

Bragg's Law: $n \cdot \lambda = 2d \cdot \sin\theta$ where d = interplanar spacing

$$d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$
 (cubic)

a = lattice parameter *hkl* = Miller indices

 $\frac{0.9\lambda}{3 \cdot \sin\theta} \text{ where } B^2 = B_m^2 - B_s^2$ $B_m = \text{FWHM peak breadth}$ $B_s = \text{that of a ref. material with}$ $\text{crystal size} > 0.1 \ \mu\text{m}$

XRD & FTIR Spectra for Hydroxyapatite

Roeder et al., J. Am. Ceram. Soc., 2006

EM & XRD Characterization Eu-HfO₂ NPs

Lauria et al., ACS Nano, 2013

Interaction of Electron Beam with Materials

Adapted from Creative Commons, 2013

EM & XRD Characterization Eu-HfO₂ NPs

Lauria et al., ACS Nano, 2013

EM Characterization of Co_{0.94}Fe_{3.30}O₄ NPs

HRTEM

Carta et al., J. Phys. Chem. C., 2013

EM Characterization of Co_{0.94}Fe_{3.30}O₄ NPs

http://www.nd.edu/~bioeng

Carta et al., J. Phys. Chem. C., 2013

STEM

EDS

Fourier Transform Infra-Red Spectroscopy (FTIR)

infra-red radiation of intensity, *I*₁

transmitted or reflected, I_2

energy absorbed by characteristic molecular vibrations

O-H C=O Royal Soc. Chem., 2016 N-H CO₂H C=C CEC-H C≡C □ Ar 📄 Ar-H CIN I C-H (bend) C=C-H C-0 RC-H C-CI -CHO 1400 4000 3000 2000 1800 1600 1200 1000 600 800 wavenumber (cm⁻¹)

used predominately in organic molecules and macromolecules to determine:

- ligand identification (molecular structure)
- composition

XRD & FTIR Spectra for Hydroxyapatite

Roeder et al., J. Am. Ceram. Soc., 2006

