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I. Principles of Fluorescence

* Fluorophores, native or man made
* Excite with one colour (wavelength A)
* Emits with a different colour (wavelength B)

* Different fluorophores have different colour
properties

* Use specialised filters to split colours to see specific
fluorescent probes
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I. Principles of fluorescence

Fluorescence - Photon Release

e Electron excited form
ground state by

S 0 s  absorption of light

f * Fluorescence observed
V(1) Ve 3) as electron decays -
photon release

Energy

v * Energy lost so light
So emitted at a longer
wavelength
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I. Principles of fluorescence

Jablonski Energy Diagram
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I. Principles of fluorescence

Fluorescein — A Typical Fluorescent Probe
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I. Principles of fluorescence
Typical Phosphorescent Probes

nS Sr,Al14055

CasS

Alkaline earth
metal
silicates e.g.
Calcium
Silicate
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I. Principles of fluorescence
* Fluorescence energy transfer (FRET)

4 Molecule 1 Molecule 2

\ Fluorescence

Fluorescence

ACCEPTOR

Intensity

Absorbance

Wavelength (nm)

Non radiative energy transfer — a quantum mechanical process of resonance between
transition dipoles

Effective between 10-100 A only
Emission and excitation spectrum must significantly overlap
Donor transfers non-radiatively to the acceptor T T
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I1.

Quantum yield

Quantum yield of fluorescence
* Quantum yield of fluorescence, @y, 1s defined as:

_ number of photons emitted

¢,

~ number of photons absorbed

* In practice, is measured by comparative measurements with reference compound
for which has been determined with high degree of accuracy.

* Ideally, reference compound should have

the same absorbance as the compound of interest at given excitation wavelength

similar excitation-emission characteristics to compound of interest (otherwise,
instrument wavelength response should be taken into account)

Same solvent, because intensity of emitted light i1s dependent on refractive index
(otherwise, apply correction

Yields similar fluorescence intensity to ensure measurements are taken within the range
of linear instrument response
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II. Fluorescence Lifetime

Efftect on fluorescence emission

* Suppose an excited molecule emits fluorescence in
relaxing back to the ground state

« If the excited state lifetime, t 1s long, then emission will
be monochromatic (single line)

o If the excited state lifetime, 1 1s short, then emission will
have a wider range of frequencies (multiple lines from
multiple vibrational states)
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II. Fluorescence Lifetime

Large At —small AE Small At — large AE

Exc Em Exc Em

Intensity
Intensity

Emission Wavelength (nm) Emission Wavelength (nm)

UNIVERSITY OF

LLABORATORY. @ NOTRE DAME

http://www.nd.edu/~amebio




ITI. Fluorescence Intensities

la. Fluorescence 1ntensity

The fluorescence intensity (F) at a particular excitation
(A,) and emission wavelength (A,) will depend on the
absorption and the quantum yield:

F(4,. 4, )=L,(4 )44, )

where,
I, — light absorbed to promote electronic transition
¢ — quantum yield
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ITI. Fluorescence Intensities

Ib.  From the Beer-Lambert law, the absorbed  intensity
for a dilute solution (very small absorbance)

I,(A,)=2.3031¢(A, )CL

for s(hX)CL <<1

where,
[, — Initial intensity
€ — molar extinction coefficient

C — concentration
L — path length
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III. Fluorescence Intensities

lc. Fluorescence intensity expression

The fluorescence intensity (F) at a particular excitation

(A,) and emission wavelength (A,,) for a dilute solution
containing a fluorophore is:

F(A,4,)=12.303s(1 )JCL@(A)

where,

I, — incident light intensity ¢ — quantum yield
C — concentration € — molar extinction
L — path length coefficient
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I'V. Fluorophores

Native biological molecules
Organic Fluorophores
Quantum Dots
Up-conversion nanoparticles

Luminescent nanoparticles

AN

Fluorescent nanoparticles
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IV. Biological Fluorophores

Endogenous Excitation Emission
fluorophores maxima (nm) maxima (nm)
—Endogenous Fluorophores —
Amino acids
. . Tryptophan 280 350
amino acids Ty rcsine 275 300
Phenylalanine 260 280
H Structural proteins
structural proteins b v s
Elastin 290, 325 340, 400
enzymes and co-enzymes Enzymes and coenzymes
FAD, flavins 450 535
. . NADH 290, 351 440, 460
vitamins NADPH 336 464
Vitamins
lipids Vitamin A 327 510
Vitamin K 335 480
. Vitamin D 390 480
p or p hyr| ns Vitamin B compounds
Pyridoxine 332, 340 400
_ Pyridoxamine 335 400
Exogenous Fluorophores Bridosal 330 o
Pyridoxic acid 315 425
i Pyridoxal 5’-phosphate 330 400
Cya nine dyeS Vitamin By, 275 305
L. Lipids
Photosensitizers Phospholipids 436 540, 560
Lipofuscin 340-395 540, 430-460
Ceroid 340-395 430-460, 540
Molecular markers — GFP, etc. popnyrins 1002450 630, 690
FAD, flavin adenine dinucleotide; NADH, reduced nicotinamide ITY OF

adenine dinucleotide; AND(P)H, reduced nicotinamide adenine di-
nucleotide phosphate. D AM E
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IV. Organic Fluorophores

R, Cy3 Ry

SOH  SOzH

Aabs(Nnm) | 489 nm[i,a] | 550 nm[i,a] | 559 nm [i,a]
A: (nm) 506 nm[i,a] | 570 nm [i,a] | 570 nm [i,a]

Ermax (102 1.3 B * 1.5 [iii,al 1.3 [iii,al
M'cm™) 1.5 [v,a/b]
T (ns) 0.2 [vii,a] 0.2 [vii,a] 2.8 [iii,al
< 0.3 [iii,a] 2.7 [xiii,a]

0.18 [xiii,a]
(08 0.05 [viii,b,*] | 0.04 [iii,a] 0.67 [iii,a]l

0.04 [xi,e,*] | 0.09 [xiii,a] | 0.85 [xiii,a]
0.053 [xii,c,*] | 0.04[v,a]

0.09[v,b]

T; (us) ] 520 [xv,b,*] [
3.9 [ix,c]

U <0.001 |<0.001[iv,e,*] [-]
[xi.e*] 0.03 [ix,c]

htt: pubs.rsc.org/en/content/articlentml/20
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I'V. Quantum Dots

Core/Shell QD

Core
Size

Dia.: 2.7 29 35 38 43 4.8 nnm

510 530 555 570 590 610 nm

U
Excitation

Normalized PL

http://pubs.rsc.org/en/Content/ArticleHtmI/20
15/CS/c4cs00532e

| | |
475 500 525 550 575
Wavelength (nm)
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IV. Up-conversion Nanoparticles
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980nm excitation
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IV. Lummescent Nanopartlcles
‘ S, e TS

N &

http://blogs.rsc.org/ce/2014/02/18/ph-
controlled-formation-of-doped-yof-
luminescent-particles/
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IV. Fluorescent Silica Nanoparticles

(@) RAW.264.7, 10pg/mi - (b) RAW 264.7, 10ug/mi -
COO- Alexad88-SiQ, NP NH, Alexa488-SiO, NP

’

e Pueim.  (c) RAW 264.7, 20u/mi - (d) RAW 264.7, 20ug/ml =
| COO- Alexa488-Si0, NP NH, Alexad88-SiO, NP
> 10" < " . :
= 3 ~~ 8.3 ug/mL
é 10" ‘,.. 6.83 ug/mL
§ ‘ ,-".0-42 ug/mL
g "".0 21ug/mL
- 10' 5 .0 10 ug/mL
3 -
la7 25 ng/ml
12 ng/mL
Particles concentration, ug/mL 1 O 103 9/C3NR0263 9F
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V. Detecting Fluorophores

 Dichroic and Filter System

» Use specialised filters to split colours to see
specific fluorescent probes
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V. Detecting Fluorophores

Long Pass Filter

* Typically permits
transmission of all light

above a set wavelength e.g.
500nm

 Used for single labelled
samples and for maximum
light gain

e Short Pass Filter

Bbpgt s
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V. Detecting Fluorophores
Band Pass Filter

* Permits transmission of
light between two defined
wavelengths e.g. 530 +
15nm

* Used for multiple labelled
samples or to help reduce
background fluorescence

Band Pass

UNIVERSITY OF
b OAKRIDGENATIONALLABORATORY @ NOTRE DAME

http://www.nd.edu/~amebio




V. Detecting Fluorophores

Dichroic Filter

* Reflects light up to one
wavelength and transmits
light beyond specified
wavelength or vice versa

» Used to excite sample with
one wavelength, but also
enables emission light to be
directed to detector

Dichroic
UNIVERSITY OF
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V. Detecting Fluorophores

No filter or dichroic 1s perfect!

Always use controls
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V. Detecting Fluorophores

Emission Detector Dichroic and
Filter system

A A A

Emission Filter | |

(Long Pass or Band Pass) B
.
/ ' i

/% | Light Source
25 |
Dichroic Mirror / J

Excitation Filter
(Short Pass)

vi Vi Vv
l l

Sample
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V. Detecting Fluorophores

Fluorescence Microscopy

Epi-Fluorescence Microscope Anatomy
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V. Detecting Fluorophores

Basic Optics of a Flow Cytometer
{ An automated fluorescent microscope)

| Dichroic mirrors \
i 1 2 3

« 7 | % 5 I “ FIuoresgence
Cell i<t \ Detection

Laser(s)

Collection Eﬁg?spass-
Lenses . = " 3

& ¢ Fhoto-

Scater ¥ ¥ multiplier o>

= Low & H|gh ‘ tubes
angle | , %
Forward Sideward || Fluorescence Reproduced from
Scatter Scatter Detection Terry Hoy
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V. Detecting Fluorophores

Fluorescence Spectrophotometer

Xenon Source

-
(WB/
~
N

Excitation .
Monochromator Emission
/S Monochromator
PMT
i I
/

Sample compartment
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V. Detecting Fluorophores

Monochromator: only a small range of wavelengths are focused
at the exit slit determined by angle of light incident on the
diffraction grating

Principle of diffraction
grating operation

A B

oY UNIVERSITY OF
OAKRIDGENATIONAL LABORATORY NOTRE DAME
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V. Fluorescent Detectors

* Photomultiplier Tubes (PMT) and Photodiodes

* PMTs are colour blind! They generate electron when
photons are present, which 1n turn 1s converted into a
digital signal. Therefore colours seen on the monitor 1s a
pseudo colour.

e Other Fluorescence Detectors
* Eyes
* Photographic Film
* Charge Couple Devices (CCD)
* Photodiodes
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V1. Fluorescence Measurements

Collection geometry in sample compartment

» Front face — collection 1s at a 22 degree angle relative to
the incident beam; appropriate for an optically
absorbing / scattering sample; more stray light

 Right angle — collection 1s at a right angle to the incident
light; appropriate for optically transparent sample; less
stray light

o /F o
ELNELVEE RS TRV OV H

* OAKRIDGE NATIONAL LABORATORY @ NOTRE DAME
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VI. Fluorescence Measurements

Blank scan

 Blank 1s identical to sample except it does not contain
fluorophore

* Measuring the fluorescence of these samples allows the
scattering (Rayleigh and Raman) to be assessed

* In addition, such samples can reveal the presence of
fluorescence impurities, which can be subtracted
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VII. Qualitative and Quantitative Assays Using Fluorophores

In Vitro Assay Probes for CD133+ Cells

. Cell Specific Targeting B. Trafficking in/on Cells C. Detecting Metastatic Tumor Cell Subsets
SKOV3.IP Cells

>

® AuNPs-Anti-CD133 =™ AuNPs-IgG ™ AuNPs

Z-Stack 3D projection
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M /\V = Control
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0.0E+00
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= 8 2 Nallathamby et al., in preparation
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VII. Spatial Tracking of Molecules

RAW DATA Super Resolution Analyzed Data
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VII. Qualitative and Quantitative Assays Using Fluorophores

Mouse Tumor Phantoms to Demonstrate Fluorescence / X-ray Modality
of AuDy650 Nanoprobes

Subcutaneous Au-Dy650 Pellet Abdominal Au-Dy650 Pellet

Dy650 Fluorescence
Dy650 Fluorescence

A =10 mM AuDy650 Pellet

B =15 mM AuDy650 Pellet
C =30 mM AuDy650 Pellet

2D X-Ray Radiograph
2D X-Ray Radiograph
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