Prakash D. Nallathamby, Ph.D 11-14-2017

Department of Aerospace and Mechanical Engineering Bioengineering Program

Outline for Fluorescence

- I. Principles of Fluorescence
- II. Quantum Yield and Lifetime
- III. Fluorescence Intensities
- IV. Fluorophores
- V. Detecting Fluorophores
- VI. Fluorescence Measurements
- VII. Applications

- Fluorophores, native or man made
- Excite with one colour (wavelength A)
- Emits with a different colour (wavelength B)
- Different fluorophores have different colour properties
- Use specialised filters to split colours to see specific fluorescent probes

Fluorescence - Photon Release

- Electron excited form ground state by absorption of light
- Fluorescence observed as electron decays photon release
- Energy lost so light emitted at a longer wavelength

Jablonski Energy Diagram

Fluorescein – A Typical Fluorescent Probe

Typical Phosphorescent Probes

Alkaline earth metal silicates e.g. Calcium Silicate

• Fluorescence energy transfer (FRET)

Non radiative energy transfer – a quantum mechanical process of resonance between transition dipoles

Effective between 10-100 Å only

Emission and excitation spectrum must significantly overlap

Donor transfers non-radiatively to the acceptor

II. Quantum yield

Quantum yield of fluorescence

• Quantum yield of fluorescence, Φ_f , is defined as:

$$\Phi_f = \frac{\text{number of photons emitted}}{\text{number of photons absorbed}}$$

- In practice, is measured by comparative measurements with reference compound for which has been determined with high degree of accuracy.
- Ideally, reference compound should have
 - the same absorbance as the compound of interest at given excitation wavelength
 - similar excitation-emission characteristics to compound of interest (otherwise, instrument wavelength response should be taken into account)

• Same solvent, because intensity of emitted light is dependent on refractive index (otherwise, apply correction

$$\frac{\Phi_f}{\Phi_f^s} = \frac{I_f}{I_f^s} \times \frac{n^2(u)}{n^2(s)}$$

• Yields similar fluorescence intensity to ensure measurements are taken within the range of linear instrument response

II. Fluorescence Lifetime

Effect on fluorescence emission

- Suppose an excited molecule emits fluorescence in relaxing back to the ground state
- If the excited state lifetime, τ is long, then emission will be monochromatic (single line)
- If the excited state lifetime, τ is short, then emission will have a wider range of frequencies (multiple lines from multiple vibrational states)

II. Fluorescence Lifetime

Large $\Delta \tau$ – small ΔE

Small $\Delta \tau$ – large ΔE

III. Fluorescence Intensities

1a. Fluorescence intensity

The fluorescence intensity (F) at a particular excitation (λ_x) and emission wavelength (λ_m) will depend on the absorption and the quantum yield:

$$\mathbf{F}(\lambda_{\mathbf{x}}, \lambda_{\mathbf{m}}) = \mathbf{I}_{\mathbf{A}}(\lambda_{\mathbf{x}})\phi(\lambda_{\mathbf{m}})$$

where,

I_A – light absorbed to promote electronic transition

φ – quantum yield

III. Fluorescence Intensities

1b. From the Beer-Lambert law, the absorbed intensity for a dilute solution (very small absorbance)

$$I_A(\lambda_x) = 2.303I_o \epsilon(\lambda_x) CL$$

for $\epsilon(\lambda_x) CL << 1$

where,

I_o – Initial intensity

 ε – molar extinction coefficient

C – concentration

L – path length

III. Fluorescence Intensities

1c. Fluorescence intensity expression

The fluorescence intensity (F) at a particular excitation (λ_x) and emission wavelength (λ_m) for a dilute solution containing a fluorophore is:

$$F(\lambda_x, \lambda_m) = I_o 2.303 \varepsilon(\lambda_x) CL \phi(\lambda_m)$$

where,

I_o – incident light intensity

C – concentration

L – path length

φ – quantum yield

 ε – molar extinction

coefficient

IV. Fluorophores

- 1. Native biological molecules
- 2. Organic Fluorophores
- 3. Quantum Dots
- 4. Up-conversion nanoparticles
- 5. Luminescent nanoparticles
- 6. Fluorescent nanoparticles

IV. Biological Fluorophores

-Endogenous Fluorophores

amino acids

structural proteins

enzymes and co-enzymes

vitamins

lipids

porphyrins

-Exogenous Fluorophores

Cyanine dyes

Photosensitizers

Molecular markers – GFP, etc.

Endogenous fluorophores	Excitation maxima (nm)	Emission maxima (nm)
Amino acids		
Tryptophan Tyrosine Phenylalanine	280 275 260	350 300 280
Structural proteins		
Collagen Elastin	325 290, 325	400, 405 340, 400
Enzymes and coenzymes		
FAD, flavins NADH NADPH	450 290, 351 336	535 440, 460 464
Vitamins		
Vitamin A Vitamin K Vitamin D	327 335 390	510 480 480
Vitamin B ₆ compounds		
Pyridoxine Pyridoxamine Pyridoxal Pyridoxic acid Pyridoxal 5'-phosphate Vitamin B ₁₂	332, 340 335 330 315 330 275	400 400 385 425 400 305
Lipids		
Phospholipids Lipofuscin Ceroid	436 340-395 340-395	540, 560 540, 430-460 430-460, 540
Porphyrins	400-450	630, 690

FAD, flavin adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; AND(P)H, reduced nicotinamide adenine dinucleotide phosphate.

ITYOF

IV. Organic Fluorophores

http://pubs.rsc.org/en/content/articlehtml/20

IV. Quantum Dots

http://pubs.rsc.org/en/Content/ArticleHtml/20 15/CS/c4cs00532e

IV. Up-conversion Nanoparticles

http://www.sciencedirect.com/science/article/pii/S1549963411000979#f0025

IV. Luminescent Nanoparticles

http://blogs.rsc.org/ce/2014/02/18/ph-controlled-formation-of-doped-yof-luminescent-particles/

IV. Fluorescent Silica Nanoparticles

10.1039/C3NR02639F

- Dichroic and Filter System
- Use specialised filters to split colours to see specific fluorescent probes

Long Pass Filter

- Typically permits transmission of all light above a set wavelength e.g. 500nm
- Used for single labelled samples and for maximum light gain
- Short Pass Filter

Band Pass Filter

- Permits transmission of light between two defined wavelengths e.g. $530 \pm$ 15nm
- Used for multiple labelled samples or to help reduce background fluorescence

Band Pass

Dichroic Filter

- Reflects light up to one wavelength and transmits light beyond specified wavelength or vice versa
- Used to excite sample with one wavelength, but also enables emission light to be directed to detector

No filter or dichroic is perfect!

Always use controls

Fluorescence Microscopy

Fluorescence Spectrophotometer

Monochromator: only a small range of wavelengths are focused at the exit slit determined by angle of light incident on the diffraction grating

Principle of diffraction grating operation

n =# or lines per min

OAK RIDGE NATIONAL LABORATORY

V. Fluorescent Detectors

- Photomultiplier Tubes (PMT) and Photodiodes
 - PMTs are colour blind! They generate electron when photons are present, which in turn is converted into a digital signal. Therefore colours seen on the monitor is a pseudo colour.
- Other Fluorescence Detectors
 - Eyes
 - Photographic Film
 - Charge Couple Devices (CCD)
 - Photodiodes

VI. Fluorescence Measurements

Collection geometry in sample compartment

- Front face collection is at a 22 degree angle relative to the incident beam; appropriate for an optically absorbing / scattering sample; more stray light
- Right angle collection is at a right angle to the incident light; appropriate for optically transparent sample; less stray light

http://www.nd.edu/~amebio

VI. Fluorescence Measurements

Blank scan

- Blank is identical to sample except it does not contain fluorophore
- Measuring the fluorescence of these samples allows the scattering (Rayleigh and Raman) to be assessed
- In addition, such samples can reveal the presence of fluorescence impurities, which can be subtracted

VII. Qualitative and Quantitative Assays Using Fluorophores

In Vitro Assay Probes for CD133+ Cells

VII. Spatial Tracking of Molecules

RAW DATA

Super Resolution Analyzed Data

VII. Qualitative and Quantitative Assays Using Fluorophores

Mouse Tumor Phantoms to Demonstrate Fluorescence / X-ray Modality of AuDy650 Nanoprobes

Subcutaneous Au-Dy650 Pellet

Abdominal Au-Dy650 Pellet

A = 10 mM AuDy650 Pellet

B = 15 mM AuDy650 Pellet

C = 30 mM AuDy650 Pellet

2D X-Ray Radiograph

