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Microarchitectural finite element models have become a key tool in the analysis of trabecular bone. Robust, accurate, and
validated constitutive models would enhance confidence in predictive applications of these models and in their usefulness as
accurate assays of tissue properties. Human trabecular bone specimens from the femoral neck (n ¼ 3), greater trochanter
(n ¼ 6), and lumbar vertebra (n ¼ 1) of eight different donors were scanned by m-CT and converted to voxel-based finite
element models. Unconfined uniaxial compression and shear loading were simulated for each of three different constitutive
models: a principal strain-based model, Drucker–Lode, and Drucker–Prager. The latter was applied with both infinitesimal
and finite kinematics. Apparent yield strains exhibited minimal dependence on the constitutive model, differing by at most
16.1%, with the kinematic formulation being influential in compression loading. At the tissue level, the quantities and
locations of yielded tissue were insensitive to the constitutive model, with the exception of the Drucker–Lode model,
suggesting that correlation of microdamage with computational models does not improve the ability to discriminate between
constitutive laws. Taken together, it is unlikely that a tissue constitutive model can be fully validated from apparent-level
experiments alone, as the calculations are too insensitive to identify differences in the outcomes. Rather, any asymmetric
criterion with a valid yield surface will likely be suitable for most trabecular bone models.
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Introduction

Computational modeling of trabecular bone is an important

tool to augment mechanical testing via in silico or virtual

experiments (van Rietbergen et al. 1998a, 1998b; Niebur

et al. 2000; Niebur et al. 2002; Kosmopoulos and Keller

2003; Bayraktar et al. 2004b; Bayraktar and Keaveny 2004;

Verhulp et al. 2008a; 2008b; Bevill andKeaveny 2009;Gong

et al. 2011). The complex microscale morphology of

trabecular bone has a dominant effect on the mechanics

(Keaveny et al. 2001; Jaasma et al. 2002), necessitating

models that capture geometric and material nonlinearities

when simulating deformation beyond elastic limits.

However, calibration and validation of these models is

essential if they are to be used as predictive tools.

Experimental methods can reveal trabecular bone’s appar-

ent-level properties (Townsend et al. 1975; Carter and Hayes

1976, 1977; Rice et al. 1988; Keaveny and Hayes 1993), but

they cannot measure the associated tissue-level mechanics.

Determining the location and severity of damage or plastic

deformationwithin a trabeculae is experimentally infeasible.

As such, directly validating nonlinear constitutive models

remains difficult. Therefore, characterizing tissue-level

yielding is beyond the scope of physical testing, and is

presently best suited to numerical techniques.

The nonlinear response of trabecular bone has two

underlying mechanisms: nonlinearly elastic behavior

resulting from finite deformation of the porous structure

(Townsend et al. 1975; Stölken and Kinney 2003; Bevill

et al. 2006), and the nonlinear damaging and plastic

deformation of the tissue. The effect of trabecular bending

can be captured using finite kinematics formulations

(Bevill et al. 2006), while the tissue-level damage-

plasticity behavior has been simulated with several

different constitutive models (Silva and Gibson 1997;

Niebur et al. 2000; Bayraktar et al. 2004a; Hernandez et al.

2006; Mercer et al. 2006; Verhulp et al. 2008a; Wang et al.

2008; Kelly and McGarry 2012; Wolfram et al. 2012;

Nawathe et al. 2013; Schwiedrzik et al. 2013). The key

feature for capturing apparent-level behavior is the use of

an asymmetric yield criterion (Pugh et al. 1973; Keaveny

et al. 1994; Fenech and Keaveny 1999; Niebur et al. 2000),

such as Mohr–Coulomb (Wang et al. 2008; Kelly and

McGarry 2012), Drucker–Prager (Mercer et al. 2006;

Kelly and McGarry 2012), or von Mises with pseudo-

kinematic hardening term (Hernandez et al. 2006;

Nawathe et al. 2013). While these models can be

calibrated to capture the apparent-level mechanical

behavior (Bayraktar et al. 2004b; Morgan et al. 2004;
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Bevill et al. 2006; Kelly and McGarry 2012), confidence in

the predictive ability of modeling requires that they also

accurately capture the tissue-level mechanics. Moreover,

accurate simulation of tissue mechanics could extend the

application of models to predict damage locations

(Nagaraja et al. 2005, 2007). The first step in identifying

and calibrating constitutive models is to determine the

sensitivity of the outcome variables to the boundary

conditions and model parameters. Experiments can then be

designed to highlight any differences, and thereby

discriminate between the candidate theories. The objective

of this study was to compare three potential constitutive

models for trabecular tissue, and highlight differences in

several outcome variables.

Materials and methods

Ten human trabecular bone specimens were modeled

using a voxel-based finite element approach. The samples

were taken from the femoral neck, greater trochanter, and

lumbar vertebra of eight different donors, ensuring that a

wide range of density and architecture were represented in

the numerical models (Amling et al. 1996) (Table 1).

Femur donors were male and female, aged 66–93,

presenting no medical history of skeletal pathology or

trauma, while the vertebra donor was anonymous. All

tissue was obtained with donor’s consent from the

National Disease Research Interchange or from an

anatomy lab (Indiana University).

The specimens were imaged by m-CT (mCT-80,
Scanco Medical AG, Brüttisellen, Switzerland) at 70 kVp,

114mA and 400ms integration time. Femur samples were

imaged at 20mm and the vertebra at 36mm isotropic voxel

size. Scans were smoothed by a Gaussian filter

(support ¼ 2, s ¼ 1) and segmented using a specimen-

specific threshold corresponding to the bone volume

fraction determined by Archimedes’ principle (Morgan

et al. 2004). The voxel size for the femoral samples was

coarsened to 40mm to reduce computation time. The mean

trabecular thickness was greater than four times the voxel

size for all models, as suggested for mesh convergence

(Niebur et al. 1999; Tjong et al. 2012). Finite element

models of cubic subregions, 5mm £ 5mm £ 5mm, were

generated by directly converting the bone voxels to 8-node

hexahedral elements. The models had between 210,000

and 630,000 elements, and up to 2.6million degrees of

freedom. An isotropic elastic modulus of 15GPa and a

Poisson’s ratio of 0.3 were assumed for the tissue.

The models were solved for two different boundary

conditions. First, 1.2% unconfined uniaxial compression

along the principal material direction, and then 1.5% shear

strain in an axial–transverse plane direction (Figure 1).

Three constitutive models were investigated. These

included a principal strain-based damaging model (Niebur

et al. 2000), Drucker–Lode, and Drucker–Prager (Figure 2

(a)). The Drucker–Prager model was applied using both

infinitesimal and finite kinematics such that each specimen

was modeled four times for each loading mode.

The elastic-perfectly-damaging model with principal

strain criterion was implemented in a custom parallelized

code (Niebur et al. 2000; Niebur et al. 2002). Yielding

occurred at an element integration point when the

maximum or minimum principal strains exceeded

specified limits. At these strain limits, the elastic modulus

was isotropically reduced to achieve a tangent modulus

equal to 5% of the initial value (Figure 2(b),(c)).

Unloading followed the secant to the origin.

The Drucker–Lode model augments the von Mises

criterion by incorporating the third invariant of deviatoric

stress, resulting in a tension–compression asymmetry. The

Drucker–Lode yield criterion is defined by,

ffiffiffiffiffiffiffi
2J2

p
þ

ffiffiffiffiffi
27

2

r
b
J3

J2
¼ Y0;

where J2 and J3 are the second and third invariants of

deviatoric stress, respectively, and b and Y0 are material

constants. The strain hardening parameter was chosen to

achieve a tangent modulus equal to 1% of the initial

modulus in tension, which resulted in approximately 5% in

Table 1. Human trabecular bone specimen properties. Mean (^SD) trabecular thickness (Tb.Th.), bone volume fraction (BV/TV), and
structure model index (SMI).

Tb.Th. (mm) BV/TV SMI

Femoral neck (n ¼ 3) 0.23 (0.01) 0.19 (0.07) 1.38 (0.29)
Greater trochanter (n ¼ 6) 0.21 (0.03) 0.18 (0.08) 1.52 (0.59)
Vertebra (n ¼ 1) 0.19 0.14 1.88

(a) (b)

Figure 1. Schematic diagram showing boundary conditions
applied to the finite element models to obtain (a) unconfined
uniaxial compression and (b) shear in an axial–transverse plane.

A.P. Baumann et al.2466
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compression. Models utilizing the Drucker–Lode yield

criterion were solved using FEAP (Finite Element Analysis

Program v8.1.a9, University of California, Berkeley).

The Drucker–Prager model similarly modifies the von

Mises criterion to account for yielding asymmetry. The

yield criterion is defined as,

ffiffiffiffiffiffiffi
2J2

p
þ 1

3
aI1 ¼ Y0;

where J2 is the second invariant of deviatoric stress, I1 is

the first invariant of total stress, and a and Y0 are material

constants. After exceeding the elastic limits, the model

was perfectly plastic. Drucker–Prager models were solved

with ADINA (ADINA R & D v8.8, Watertown, MA).

Yield properties for all models were chosen to achieve

uniaxial tensile and compressive tissue yield strains of

0.41% and 0.83%, respectively (Bayraktar et al. 2004b).

The results were compared at both the tissue and apparent

levels. Apparent-level yield stress and strain were

determined using the 0.2% offset method. At the tissue

level, the quantity, mode (tension vs. compression), and

location of yielded tissue were compared. All tissue-level

comparisons were made at 1.2% and 1.5% strain in

compression and shear, respectively, which are beyond the

known yield strains. Intraspecimen comparisons of yielded

tissue were quantified by the percentage of the total number

of elements that yielded, and the congruence, defined as the

percentage of yielded elements that were similarly yielded

across two constitutive formulations. An exact match was

considered when the elements were both subjected to

tension (I1 . 0) or to compression (I1 , 0), while a relaxed

criterion considered yielded tissue subjected to any stress

state. In addition, the mean distance to the nearest element

of equivalent yield state was calculated for non-congruent

elements. Tissue was defined as yielded in the principal

strain criterion if either the tensile or compressive strain

limit was exceeded at any time. For the Drucker–Lode and

Drucker–Prager models, yielded elements were identified

by finding elements where the quantities
ffiffiffiffiffiffiffi
2J2

p þ
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Figure 2. (a) Yield surfaces of the principal strain (PS), Drucker–Lode (DL), and Drucker–Prager (DP) constitutive models in principal
stress space. Each criterion was calibrated to have the same yield strains in uniaxial tension and compression. Bilinear, asymmetric
behavior of the yield criteria subject to (b) unconfined uniaxial compression and tension loading and (c) shear loading. The principal strain
model had the tangent modulus equal to 5% of the original modulus at the yield point. The hardening modulus for the Drucker–Lode
model was 1% of the original modulus. The Drucker–Prager model was perfectly plastic after yielding. (d) Representative stress–strain
curves for a specimen from the greater trochanter with relatively low volume fraction (BV/TV ¼ 0.12) to illustrate the differences
between constitutive models at the apparent level.
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ffiffiffiffiffiffiffiffiffiffiffiffiffið27=2Þp
bðJ3=J2Þ or

ffiffiffiffiffiffiffi
2J2

p þ ð1=3ÞaI1 (in stress space)

were greater than Y0, respectively. Elements that had

yielded and later unloaded were not counted.

Results were compared between constitutive formu-

lations using repeated measures analysis of variance

(ANOVA) (JMP 9.0.2, SAS Institute Inc., Cary, NC,

USA). Post hoc comparisons between constitutive theories

were performed using a paired t-test. The level of

significance for all tests was set at p , 0.05.

Results

The mean calculated yield strains differed between the

four formulations for both compressive and shear loading

(Figure 3(a)). The apparent-level compressive yield strain

calculated using the principal strain and Drucker–Prager

small kinematics criteria were not statistically different

( p ¼ 0.63, ANOVA). Apparent-level shear yield strains

were also not different between the large and small

kinematics Drucker–Prager models ( p ¼ 0.32, ANOVA),

while differences existed between the remaining models

( p , 0.0003, ANOVA). Shear yield strains were larger

than compressive yield strains ( p , 0.0001, paired t-test),

in agreement with experimental measurements (Fenech

and Keaveny 1999; Ford and Keaveny 1996; Wu et al.

2013). Specimen yield strains were not correlated to

volume fraction (BV/TV) ( p . 0.06, ANOVA) (Figure 3

(b),(c)). For samples with BV/TV less than 0.2, the

coefficient of variation of the apparent compressive yield

strain was 0.15 compared to 0.06 for those with BV/TV

greater than 0.2. However, there were not enough samples

with low volume fraction to statistically validate this

observation. Similarly, coefficient of variation of the

apparent level shear yield strain was 0.11 for BV/TV less

than 0.2 compared to 0.07 for BV/TV greater than 0.2.

The total amount of yielded tissue differed between

models and loading modes (Figure 4). For compressive

loading, the principal strain and Drucker–Prager model

with finite kinematics were not different ( p ¼ 0.15,

ANOVA). In contrast, models loaded in shear differed

between all constitutive models ( p , 0.03, ANOVA).

The locations of yielded tissue were sensitive to the

yield criterion, but not to the kinematics formulation.

Yielded elements had 41.7–88.7% agreement between

formulations (Figure 5(a) and Table 2). Over 80% of the

yielded elements were in agreement between the

Drucker–Prager infinitesimal and finite kinematic formu-

lations. In contrast, about 42% of yielded elements agreed

between Drucker–Prager small and Drucker–Lode.

Similar trends were observed in shear loading, with the

greatest congruence achieved between Drucker–Prager

small and Drucker–Prager large models and least

congruence between Drucker–Lode and Drucker–Prager

small models. Within compression models, the principal

strain versus Drucker–Prager small and principal strain

versus Drucker–Prager large model pairs were not

different ( p ¼ 0.13, ANOVA), as were the principal strain

versus Drucker–Prager large and Drucker–Lode versus

principal strain model pairs ( p ¼ 0.06, ANOVA). All other

congruence pairs in either compression or shear loading

were significantly different ( p , 0.02, ANOVA). The

effects of BV/TV on congruence of yielded regions with

respect to the Drucker–Prager large kinematics formu-

0

0.3

0.6

0.9

1.2

1.5

1.8
S

he
ar

 Y
ie

ld
 S

tr
ai

n 
(%

)

0 0.1 0.2 0.3 0.4

BV/TV

(c)
Y

ie
ld

 S
tr

ai
n 

(%
)

0

0.4

0.8

1.2

1.6

Compression Shear

BA A
C

A
B

C C

PS
DL
DPS
DPL

(a)

C
om

pr
es

si
ve

 Y
ie

ld
 S

tr
ai

n 
(%

)

BV/TV

1.8

0

0.3

0.6

0.9

1.2

1.5

0 0.1 0.2 0.3 0.4

PS
DL
DPS
DPL

(b)

Figure 3. (a) Apparent-level yield strains (mean ^ SD) for the
four constitutive models (PS ¼ principal strain, DL ¼ Drucker–
Lode, DPS ¼ Drucker–Prager small, DPL ¼ Drucker–Prager
large). Differences between values not connected by the same
letter were significantly different (p , 0.05, ANOVA). Apparent
level (b) compression and (c) shear yield strains were not
correlated to volume fraction (BV/TV), although the variation
was greater for specimens with lower volume fractions (BV/
TV , 0.2).

A.P. Baumann et al.4468

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
re

 D
am

e]
, [

R
ya

n 
R

oe
de

r]
 a

t 1
2:

42
 2

5 
Ja

nu
ar

y 
20

16
 



lation revealed no correlations ( p . 0.06, ANOVA)

(Figure 5). Agreement between formulations was further

evaluated by determining the distance from a yielded non-

congruent element to the nearest element of equivalent

yielding mode in the corresponding model (Figure 5(d)).

The mean distance was approximately 2 elements

(81.6 ^ 35.3mm) for compressive loading and slightly

more (92.7 ^ 53.6mm) for shear ( p , 0.05, paired t-test).

The yielded regions in shear based on the Drucker–Lode

criterion were farther from equivalent regions in other

formulations.

Discussion

Nonlinear numerical analysis of trabecular bone relies on a

suitable nonlinear constitutive model. Tissue yield

properties with the proper incorporation of asymmetry

can generally be calibrated to match apparent-level

experimental results (Bayraktar et al. 2004b; Morgan

et al. 2004; Bevill et al. 2006; Kelly and McGarry 2012).

However, the sensitivity of outcome variables to these

constitutive models is not known. The results of this study

demonstrate that apparent-level experiments can delineate

the tensile and compressive yield limits of the tissue

constitutive model, but cannot entirely differentiate

between constitutive models. Apparent-level yield proper-

ties of trabecular bone were dependent on the constitutive

model. However, the large standard deviation in these

measurements would make discerning one constitutive

model from another unlikely, particularly in compressive

loading. With the exception of the Drucker–Lode

constitutive model, all criteria produced similar quantities

of yielded tissue with nearly equivalent locations. Even if

measuring the tissue-level yielding mode and location

were experimentally feasible, one could only weakly

separate the criteria based on these parameters. As such,

fully validating a constitutive model at the tissue scale may

be impractical. However, given the similarity of outcome

variables, these results demonstrate it is reasonable to use

any constitutive model that incorporates the underlying

tissue strength asymmetry.

Tissue-level outcome variables of the Drucker–Lode

constitutive model differed from the principal strain and

Drucker–Prager models. When calibrated to the appro-

priate yield properties for bone, the Drucker–Lode

criterion produced a concave yield surface, while the

others were convex (Figure 2(a)). Concave yield surfaces

are theoretically inadmissible because they permit

evolution of unconnected elastic states, or continuous

loading conditions that progress from yielded to unyielded

states (Khan 1995). However, the three criteria still

exhibited good agreement in the uniaxial tension,

compression, and shear regions (within the second and

fourth quadrants). This suggests that the majority of tissue

yields in these modes, where the hydrostatic stress is low.

The variation in the amount and location of yielded tissue

must therefore be caused by the hydrostatic stress. It is

here that the Drucker–Lode model is most different from

the other criteria. The Drucker–Lode elastic region

extended much further into the hydrostatic tension state,

and was truncated in the hydrostatic compression state in

comparison with the other criteria. As such, the lower

fraction of yielded tissue in this model may have resulted

from hydrostatic loading. Therefore, based on the tissue-

scale outcome variables, it could be possible to

differentiate the Drucker–Lode from the other constitutive

models, given experimental methodologies that allow for

tissue-scale determination of yielding mode and location.

The direct element-to-element comparison of yielded

regions indicated that congruence is approximately 50%

(Figure 5). This quantification, though, may be misleading.

Yield maps of intraspecimen and intramode models

revealed that the mode and general location of yielded

tissue were similar for all constitutive models (Figure 6).

The average distance to an equivalent yielded element

between models was about 87mm. Thus, while con-

gruence may have only been about 50%, a region of

similar yielding is within slightly more than two finite

elements.

The results of this study complement previous studies

investigating finite kinematics formulations (Stölken and

Kinney 2003; Morgan et al. 2004; Bevill et al. 2006; Bevill
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et al. 2009; Nawathe et al. 2013). Finite kinematics were

important for determining apparent level properties for

low density samples in compression. However, the

kinematic formulation did not influence the location of

predicted tissue yielding. This further demonstrates the

insensitivity of tissue-level outcomes to the model

formulation in comparison to apparent-level outcomes.

However, finite kinematics should be applied when

models are used to complement physical experiments

(Bevill et al. 2006, 2009; Bevill and Keaveny 2009).

The relative quantities of yielded tissue were similar to

those found in previous studies. Much like the results of

Sanyal et al. (2012) and Shi et al. (2009, 2010a, 2010b),

our findings indicate that trabecular samples subjected to

simulated compression exhibit a mixture of compressive

and tensile yielding within the tissue, dominated by

compressive yielding. This reflects the predominant

Table 2. Mean (^SD) congruence percentage between
constitutive models (PS ¼ principal strain, DL ¼ Drucker–
Lode, DPS ¼ Drucker–Prager small, DPL ¼ Drucker–Prager
large). Exact congruence requires that an element pair yield in the
same mode (both in tension or both in compression). Relaxed
congruence only requires that an element pair has yielded (both
in tension, both in compression, or one in tension and the other in
compression).

Compression Shear

Congruence Exact Relaxed Exact Relaxed

PS vs. DL 53.8 (6.9) 55.0 (7.3) 52.2 (5.0) 53.7 (5.8)
PS vs. DPS 63.9 (2.2) 65.8 (1.8) 65.4 (2.4) 68.0 (2.5)
PS vs. DPL 61.3 (5.9) 63.4 (5.6) 67.9 (2.5) 70.3 (2.7)
DL vs. DPS 41.7 (5.6) 42.9 (6.0) 41.9 (4.6) 43.6 (5.3)
DL vs. DPL 45.0 (6.6) 46.3 (7.1) 43.9 (5.0) 45.6 (5.6)
DPS vs. DPL 80.1 (10.4) 81.5 (9.9) 88.0 (4.3) 88.7 (4.3)
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Figure 5. (a) Exact congruence (mean ^ SD) of yielded elements between the four constitutive models (PS ¼ principal strain,
DL ¼ Drucker–Lode, DPS ¼ Drucker–Prager small, DPL ¼ Drucker–Prager large). Specimen exact congruence with respect to the
Drucker–Prager large constitutive model for (b) compression and (c) shear loading was not correlated to volume fraction (BV/TV). (d)
Distance (mean ^ SD) from a non-congruent yielded element to the nearest element of similar yielding mode in the corresponding model.
Differences between values not connected by the same letter were statistically significant ( p , 0.05, ANOVA).
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orientation of the trabecular tissue along the loading axis,

such that bending of trabeculae is minimized (Niebur et al.

2000; Niebur et al. 2002; Bayraktar and Keaveny 2004;

Bevill et al. 2009; Shi et al. 2009; 2010a, 2010b). In shear-

loaded specimens, the majority of the tissue yielded in

tension. This is consistent with predominant bending of

trabeculae resulting in tensile yielding due to the

asymmetry of the yield properties.

The femoral bone cores exhibited similar apparent-

level compression yield strains to experimental results,

while shear models underestimated the reported yield

strains (Kopperdahl and Keaveny 1998; Bruyère Garnier

et al. 1999; Morgan and Keaveny 2001; Bayraktar et al.

2004b; Rincón-Kohli and Zysset 2009; Wu et al. 2013).

The apparent-level shear yield strains could be calibrated

by adjusting the tensile yield strain in the criteria with little

effect on apparent compressive yield properties. The

compressive yield strain variability appeared qualitatively

higher at lower volume fractions (Figure 3), but, unlike

prior experimental studies, was uncorrelated to volume

fraction (Bevill et al. 2009; Rincón-Kohli and Zysset

2009). However, this may be due to the lower sample size

(n ¼ 10). As such, differentiating between constitutive

models based on apparent-level outcome variables may

only be feasible at low volume fractions, if at all.

Additional loading modes could have revealed

differences between the constitutive theories. Kelly and

McGarry (2012) showed that for trabecular bone and analog

loaded in uniaxial unconfined and confined compression,

confining the specimen significantly influenced the non-

linear response of trabecular bone. While Drucker–Prager

and Mohr–Coulomb models were able to accurately

predict the measured stress response for unconfined

uniaxial compression, experimental and simulated confined

compression showed that these models could not capture

the measured response. If the specimens in this study had

been loaded in confined compression, more elements may

have been subjected to hydrostatic stresses which would be

expected to highlight differences between constitutive

models. Loading trabecular specimens perpendicular to the

principal axis also influences the mode, quantity, and

location of yielded trabecular tissue (Shi et al. 2009,

2010b). For example, compressing specimens in an off-axis

mode induces greater quantities of tensile yielded tissue in

transversely oriented trabeculae (Shi et al. 2009, 2010b).

Simulated loading in this manner may have exposed more

differences between the constitutive models.

The simulated yielding of trabecular specimens

revealed that outcome variables are dependent upon the

choice of nonlinear constitutive model. However, the

differences between the constitutivemodels were relatively

small. Tissue asymmetry dominated the apparent-level

response, and tissue-level yielding was only able to discern

criteria with major differences in the yield surface. Given

that the yield criteria primarily differ in the locations of

yielded tissue, methods to accurately measure yielding or

damage volumetrically (Wang et al. 2007; Leng et al. 2008;

Lambers et al. 2013) are needed to differentiate the models.

Even with such tools, several criteria may give suitable

results. Indeed, the criteria predict similar amounts, modes,

and locations of yielded tissue when the yield surface is

convex, and any such asymmetric criterion will perform

reasonably well for most bone biomechanics applications.
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constitutive models. Insets depict the local differences in yielding
on an element-by-element basis.
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