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Abstract. Quantitative material decomposition of multiple mixed, or spatially coincident, contrast agent
(gadolinium and iodine) and tissue (calcium and water) compositions is demonstrated using photon-counting
spectral computed tomography (CT). Material decomposition is performed using constrained maximum like-
lihood estimation (MLE) in the image domain. MLE is calibrated by multiple linear regression of all pure material
compositions, which exhibits a strong correlation (R2 > 0.91) between the measured x-ray attenuation in each
photon energy bin and known concentrations in the calibration phantom. Material decomposition of mixed
compositions in the sample phantom provides color material concentration maps that clearly identify and
differentiate each material. The measured area under the receiver operating characteristic curve is >0.95,
indicating highly accurate material identification. Material decomposition also provides accurate quantitative
estimates of material concentrations in mixed compositions with a root-mean-squared error <12% of the
maximum concentration for each material. Thus, photon-counting spectral CT enables quantitative molecular
imaging of multiple spatially coincident contrast agent (gadolinium and iodine) and tissue (calcium and water)
compositions, which is not possible with current clinical molecular imaging modalities, such as nuclear imaging
and magnetic resonance imaging. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.1.013501]
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1 Introduction
X-ray computed tomography (CT) provides three-dimensional
anatomic imaging at high spatial and temporal resolution.1–3

However, the identification of multiple contrast agent and tissue
compositions, or molecular imaging, in CT is inhibited by sim-
ilarity in the overall x-ray attenuation across the polychromatic
x-ray photon energy spectrum. Thus, CT is primarily used to
diagnose changes in anatomic morphology. Morphological
anomalies can be indicative of disease states, but a definitive
diagnosis often requires quantitative imaging or a level of soft
tissue discrimination that is not possible with conventional CT.4

In these cases, an adjunct imaging modality, such as positron-
emission tomography (PET) or magnetic resonance imaging
(MRI), is required to confirm an initial diagnosis. PET provides
sensitive molecular imaging by tracking positron-emitting
radionuclide imaging probes but requires simultaneous CT for
anatomic imaging.4–6 MRI provides enhanced soft tissue con-
trast but at a cost of extended time for image acquisition.4

Thus, quantitative material identification using x-ray CT would
benefit patients by reducing imaging time, cost, and radiation
exposure.

Photon energy discrimination in x-ray CT, or multienergy
CT, was first proposed as a method for material identification
in 1970s.7 Dual-energy CT (DECT) systems, which typically
utilize two-photon energy source spectra via different tube
potentials with an energy integrating detector, were subse-
quently developed in 1980s. DECT has enabled improved

separation of two material components, e.g., bone or contrast
agents versus soft tissue,8,9 and three materials can be decom-
posed by applying a physical constraint, such a mass or volume
conservation.8,10,11 More recently, photon-counting detectors
have enabled binning of photon energy spectra from a poly-
chromatic source.12–14 Photon-counting detectors were first used
for measurements of high-energy, low flux spectra, but recent
advances in detector materials and application-specific integrat-
ing circuits have enabled separation of high flux energy spectra
and thus applications in photon-counting spectral CT.14

Prototype photon-counting spectral CT systems acquire mul-
tiple energy bins and, when used in conjunction with material
decomposition algorithms, have been used to identify15–17 and
quantify18–25 multiple discrete contrast agent and tissue compo-
sitions (Table 1). Quantitative material decomposition of binary
mixtures of contrast agents in water (or three total materials,
Table 1) has been demonstrated and validated by the mean abso-
lute error versus known concentrations.15,21,24,25 Moreover, these
recent studies also demonstrated the ability of spectral CT to
track multiple contrast agents longitudinally in vivo,24,25 but
analyses were limited to contrast agents, ignoring physiological
fluids and tissues, and were not quantitatively validated. Thus,
quantitative material decomposition of more than three spatially
coincident contrast agent and tissue compositions has not been
quantitatively validated (Table 1). Importantly, the quantifica-
tion of multiple spatially coincident components in mixed com-
positions is not possible with current clinical molecular imaging
modalities, such as PET and MRI, and thus offers the greatest
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transformative potential for spectral CT in clinical diagnostic
imaging.

Therefore, the objective of this study was to demonstrate and
validate quantitative material decomposition of multiple mixed,
or spatially coincident, contrast agent and tissue compositions
using photon-counting spectral CT. Iodine and gadolinium
were selected for investigation due to their use as contrast agents
in clinical diagnostic imaging with CT and MRI, respectively;
calcium was included to simulate mineralized tissue. Material
decomposition was performed using constrained maximum like-
lihood estimation (MLE) in the image domain. The accuracy of
material decomposition was systematically and quantitatively
evaluated by the root-mean-squared error (RMSE), sensitivity,
specificity, and area under the receiver operating characteristic
curve (AUC) on material concentration maps of calcium, gado-
linium, and iodine.

2 Materials and Methods

2.1 Calibration Phantom of Pure Discrete
Compositions

Gadolinium (III) nitrate hexahydrate, GdðNO3Þ3 · 6H2O (Acros
Organics, 99.9%), solutions were prepared in deionized (DI)
water at 0, 50, and 100 mM (0, 7.8, and 15.7 mg∕mL, respec-
tively) concentration. Iohexol (TCI Chemicals, >98.0%) solu-
tions were also prepared in DI water at 0, 50, and 100 mM
(0, 6.3, and 12.6 mg∕mL, respectively) concentration. Calcium
chloride dihydrate, CaCl2 · 2H2O (Sigma-Aldrich, ≥99.9%),
solutions were prepared in DI water at 0, 1450, and 2900 mM
(0, 58, and 116 mg∕mL, respectively) concentration, which
were chosen to match the total attenuation of gadolinium nitrate
across the overall photon energy spectrum of the polychromatic
x-ray source (∼20 to 80 keV). Calibration concentrations were
chosen to significantly exceed estimated sample concentrations
to achieve greater accuracy and less variability in image-based
material decomposition by maximizing the signal-to-noise ratio
for each component.26 Eppendorf tubes (5 mm inner diameter)
containing each discrete composition and concentration (7 in
total) were placed in a modular acrylic phantom (35 mm
outer diameter) for imaging in a single acquisition. A polytetra-
fluoroethyelene screw was present at the center of the phantom
as part of a clamping mechanism for holding Eppendorf tubes

within the phantom and was excluded from material decompo-
sition.

2.2 Sample Phantom of Mixed Compositions

A sample phantom comprised mixed combinations of 0, 10, and
20 mM (0, 1.6, and 3.1 mg∕mL, respectively) concentrations of
gadolinium nitrate; 0, 10, and 20 mM (0, 1.3, and 2.5 mg∕mL,
respectively) concentrations of iohexol; and 0, 290 and 580 mM
(0, 11.6, and 23.2 mg∕mL, respectively) concentrations of cal-
cium chloride (27 in total) in DI water. The range of contrast
agent concentrations was selected to be feasible for in vivo
targeted delivery to a site of interest, based upon previous pre-
clinical animal models, while challenging the detection limit
of conventional CT.27 Calcium chloride concentrations were
chosen to match the total attenuation of gadolinium nitrate
across the overall photon energy spectrum and thus presented a
challenge for material decomposition of a contrast agent coinci-
dent with mineralized tissue. Eppendorf tubes containing each
mixed composition and concentration (27 in total) were placed
in the same modular phantom for imaging in 6 acquisitions.

2.3 Image Acquisition

Calibration and sample phantoms were imaged using a commer-
cially available spectral CT (MARS-12 v.5, MARS Bioimaging
Ltd., Christchurch, New Zealand) equipped with a polychro-
matic x-ray source operating at 80 kVp, 1.96 mm aluminum
beam filtration, and a photon-counting detector comprising
a CdZnTe semiconductor sensor, 2 mm in thickness, bonded
to a Medipix 3RX chip12,28 with 110 μm pixels and 5 energy
bins with charge summing mode. Images were acquired using
a helical scan with 1440 projections per rotation. Images were
acquired with an integration time of 100 ms resulting in an
average of 1000 counts in each detector pixel. The excitation
current was set to 16 μA to produce a photon count rate of
10 counts∕ms in order to mitigate the effects of pulse pileup.
Detector energy thresholds were set at 19, 29, 39, and 50 keV
to leverage the k-edge discontinuities of iodine and gadolinium
at 33.2 and 50.2 keV, respectively. An arbitration counter is
also present at 7 keV, such that the 5 energy bins were 7 to 19,
19 to 29, 29 to 39, 39 to 50, and 50 to 80 keV. Reconstructions
were performed with a 100 μm isometric voxel size and a nomi-
nal spatial resolution of ∼300 μm. For representative images,

Table 1 Summary of previous experimental studies investigating quantitative material decomposition of multiple (more than two) contrast
agent and tissue compositions by photon-counting spectral CT, highlighting progress and differences with respect to discrete versus spatially
coincident (mixed) compositions, models, and validation.

Number of materialsa Spatial relationship Measurement Models Validation References

3 to 4 Discrete Identification Phantoms n/a 15–17
Ex vivo tissue

3 to 4 Discrete Quantification Phantoms MAE 18–24
Ex vivo tissue

3 Mixed Quantification Phantoms MAE 15, 21, 24, 25

3 to 4 Mixed Quantification In vivo None 24, 25

4 Mixed Quantification Phantoms AUC, MAE, and RMSE This study

Note: AUC, area under the receiver operating characteristic curve; MAE, mean absolute error; n/a, not applicable; RMSE, root-mean-squared error.
aThe total number of materials includes water.
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grayscale intensities were converted to Hounsfield units (HU) by
calibration with air (−1000 HU) and water (0 HU).

2.4 Material Decomposition

Material decomposition of spatially coincident calcium (Ca),
gadolinium (Gd), iodine (I), and water was performed using
constrained MLE in the image domain, adapting methods pre-
viously demonstrated for spatially discrete compositions.26

Detailed methods are provided in the Appendix. Briefly, MLE
was calibrated by an M × N material basis matrix, where M is
the number of energy bins and N is the number of materials to
be decomposed. The material basis matrix was established by
multiple linear least squares regression of the x-ray attenuation
measured in each energy bin versus known concentrations of
each material composition in the calibration phantom. The x-ray
attenuation was measured as the mean attenuation within a
14.6mm3 cuboidal volume of interest (VOI) located at the cen-
ter of each Eppendorf tube in the calibration phantom images.
Elemental volume fractions were estimated from the known
concentrations of compositions in the calibration phantom based
upon the mass and density of the elemental component (Ca, Gd,
or I) and water.

The volume fraction, or fractional abundance, of materials
in each voxel of sample phantom images was determined by
MLE using a quadratic programming function, quadprog,
in MATLAB (v.9.0, Mathworks Inc.) such that solutions to the
linear system of equations were constrained to full additivity and
non-negativity.29 The estimated elemental volume fractions of
unknown sample compositions were then scaled to millimolar
(mM) concentration using the material basis matrix and linear
regression model determined from the calibration phantom.

The accuracy of material decomposition was evaluated from
sample phantom images using a 7.9mm3 cuboidal VOI, includ-
ing 45 slices of the reconstruction, located at the center of each
Eppendorf tube. Sensitivity and specificity for detecting each
component (Ca, Gd, or I) in true positive and true negative
voxels, respectively, were measured at a 5 mM threshold.
Mixtures containing 290 mM calcium, 10 mM gadolinium,
and 10 mM iodine were selected as true positive VOIs (9 in
total) for each component. An equal total number of true neg-
ative VOIs (9 in total) were selected as those containing 0 mM of
the component of interest (Ca, Gd, or I) but identical concen-
trations to the true positive VOIs for the other components.
AUC was calculated by evaluating sensitivity and specificity

over a range of concentration thresholds (0 to 1000 mM or 0
to 40 mg∕mL Ca, 0 to 30 mM or 0 to 4.7 mg∕mL Gd, and
0 to 30 mM or 0 to 3.8 mg∕mL I), which exceeded the concen-
trations within the sample phantom, to determine sets of positive
and negative voxels. The quantitative accuracy of material de-
composition was evaluated by the RMSE of all estimated versus
known concentrations for each component (Ca, Gd, or I) pooled
over mixed compositions (27 in total). The overall effects of
each component (Ca, Gd, and I) in mixed compositions, and
binary interactions (Ca × Gd, Ca × I, and I × Gd), on the con-
centrations estimated by material decomposition were examined
using multiple regression (JMP® 13.0, SAS Institute Inc.).

3 Results
Grayscale images of pure compositions in the calibration phan-
tom exhibited increased x-ray attenuation with an increased
concentration of each composition, as expected [Fig. 1(a)].
The k-edge discontinuity of gadolinium and iodine was evident
by deviations in the expected trend of decreased attenuation with
increased photon energy at fixed concentration, or a sharp
change in the linear slope of attenuation versus concentration.
The measured x-ray attenuation in each photon energy bin
versus known concentrations of each material composition (Ca,
Gd, and I) in the calibration phantom (Fig. 1) exhibited a strong
linear correlation (R2 > 0.91, Table 2) with low error (RMSE
< 1.8%). The strong correlation and low error of the multiple
linear regression models were critical for enabling accurate
material decomposition mixed compositions using MLE.

Material decomposition of each component (Ca, Gd, and I)
in mixed compositions of the sample phantom provided color
material concentration maps that clearly identified and differen-
tiated each material (Fig. 2). In contrast, these materials were
indistinguishable in representative CT images even as pure com-
positions [Fig. 1(a)], let alone mixed compositions [Fig. 2(a)].
Voxel-based classification metrics indicated that material de-
composition of each component (Ca, Gd, and I) was highly accu-
rate, exhibiting AUC > 0.95 and specificity > 0.92 (Table 3).
The sensitivity of detecting calcium and iodine was 0.94,
whereas gadolinium was lower at 0.70.

Material decomposition also provided accurate quantitative
estimates of material concentrations in mixed compositions
with RMSE <12% of the maximum concentration for each com-
ponent (Table 3). Importantly, more than 95%, 97%, and 98% of
variability in the estimated concentration of calcium, gadolin-
ium, and iodine, respectively, were predicted by the primary
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Fig. 1 (a) Representative grayscale CT image slice of the calibration phantom at the highest energy bin
(50 to 80 keV). Linear regressions of the measured x-ray attenuation in each photon energy bin versus
known concentrations of (b) gadolinium, (c) iodine, and (d) calcium in the calibration phantom.
Regression coefficients are tabulated in Table 2.
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effect of each respective component alone by linear regression.
Nonetheless, multiple linear regression models showed that
estimated concentrations of calcium were influenced by the
presence of either iodine or gadolinium, including an interaction
between calcium and iodine (Table 4). Estimated concentrations
of gadolinium were also influenced by iodine (Table 4).

4 Discussion
Photon-counting spectral CT enabled quantitative molecular im-
aging of multiple spatially coincident contrast agent (gadolin-
ium and iodine) and tissue (calcium and water) compositions
(Fig. 2) with high accuracy (AUC > 0.95, RMSE < 12%,
Table 3). In fact, the AUC and RMSE for material decomposi-
tion of the mixed compositions were similar to that previously
reported for material decomposition of a single discrete contrast
agent using similar image acquisition and material decomposi-
tion methods.26 Thus, the relatively minor errors that were
observed were most likely due to artifacts and inherent noise
in the acquired images that were propagated to the material
decomposition in the image domain, and/or assumptions in
the material decomposition methods, and were not noticeably

Table 2 Linear least squares regression of the measured x-ray attenuation, y (a.u.), in each photon energy bin versus known concentrations,
x (mM), of each material component (Ca, Gd, and I) in the calibration phantom. RMSE was calculated as a percent of the maximum signal.

Energy bin

Individual regressions
Multiple regression

model

Ca R2 Gd R2 I R2 R2 RMSE (%)

7 to 19 keV y ¼ 0.9 · x þ 4233 0.98 y ¼ 14.6 · x þ 4294 0.88 y ¼ 21.7 · x þ 4209 0.98 0.91 1.8

19 to 29 keV y ¼ 1.2 · x þ 4364 0.99 y ¼ 20.2 · x þ 4423 0.93 y ¼ 14.5 · x þ 4352 0.96 0.94 1.7

29 to 39 keV y ¼ 0.8 · x þ 3603 0.99 y ¼ 13.3 · x þ 3620 0.92 y ¼ 19.0 · x þ 3595 0.98 0.93 1.7

39 to 50 keV y ¼ 0.4 · x þ 3115 0.98 y ¼ 8.9 · x þ 3142 0.89 y ¼ 16.4 · x þ 3109 0.98 0.91 1.6

50 to 80 keV y ¼ 0.3 · x þ 2880 0.96 y ¼ 15.2 · x þ 2915 0.96 y ¼ 8.9 · x þ 2882 0.96 0.96 1.7

Conventional image(a)

0/10/0
290/10/0

580/10/0

0/10/10
290/10/10

580/10/10

0/0/0

0/0/0

mM Ca/Gd/I 5 mm

Ca decomposition(b)

5800
Concentration (mM)

290145 435 200
Concentration (mM)

105 15

Gd decomposition(c) I decomposition(d)

200
Concentration (mM)

105 15300–300
X-Ray attenuation (HU)

0–150 150

Fig. 2 Representative image slices of a sample phantom with mixed, or spatially coincident, composi-
tions comprising calcium (Ca) at 0, 290, and 580 mM (0, 11.6, and 23.2 mg∕mL, respectively) concen-
tration; gadolinium (Gd) at 0 and 10 mM (0 and 1.6 mg∕mL, respectively) concentration; and iodine (I) at
0 and 10 mM (0 and 1.3 mg∕mL, respectively) concentration: (a) grayscale CT image slice at the highest
energy bin (50 to 80 keV) and quantitative material decomposition maps for (b) Ca (red), (c) Gd (green),
and (d) I (blue). Grayscale intensities were converted to HU and color intensities were scaled to mM
concentrations.

Table 3 Overall spatial (sensitivity, specificity, and AUC) and quan-
titative (RMSE and average absolute error) accuracy of material
decomposition for mixed compositions of calcium (Ca), gadolinium
(Gd), and iodine (I) in water.

Metric Ca Gd I

Sensitivity 0.94 0.70 0.94

Specificity 0.93 0.98 0.92

AUC 0.98 0.95 0.98

RMSE (mM) 58.5 2.39 1.45

RMSE (mg/mL) 2.34 0.38 0.18

RMSE (%) 10.1 11.9 7.3

Absolute error (mM) 22.2 −1.6 1.0

Absolute error (mg/mL) 0.89 −0.24 0.13

Absolute error (%) 3.9 −7.8 5.2
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compounded by the decomposition of multiple spatially coinci-
dent compositions. However, further work is needed to investi-
gate the relative contributions of these sources of error.

Images in this study were known to include two artifacts.
A geometric misalignment, specifically a 1 mm offset of the
source and detector, was discovered during the course of this
study and was observed to produce a reconstruction artifact
observed as relatively higher concentration around the periph-
ery of sample phantom compositions, most noticeably in the
iodine concentration map [Fig. 2(d)]. Additionally, a ring arti-
fact was observed due to the presence of physical gaps between
the three detector chips. These artifacts were small and not
readily visible in images but certainly contributed to the ob-
served error in image-based material decomposition. Therefore,
the accuracy of the material decomposition results, in spite of
these image artifacts, is encouraging and suggests that the
image-based material decomposition was relatively robust
against image artifacts.

To minimize the effects of inherent image noise on material
decomposition, material concentrations in the calibration phan-
tom were chosen to be much greater than those measured in the
sample phantom, without starving the detector. Calibration con-
centrations that significantly exceed estimated sample concen-
trations were previously shown to result in greater accuracy and
less variability in image-based material decomposition due to
maximizing the signal-to-noise ratio for each component.26

Therefore, calibration with lower concentrations, comparable
in magnitude to those measured in the sample phantom, would
be expected to result in greater error and variability than that
observed in this study.

Assumptions required to constrain the solution space for
material decomposition may also influence error in quantitative
estimates.30 In this study, the material decomposition was
volume-constrained, and the overall volume fraction of each
elemental component was allowed to increase with the addition
of solute (e.g., Gd) to solvent (water).26 Unfortunately, there is
no constraint that perfectly describes the physical system.
For example, calcium concentrations were sufficiently high to
increase the overall volume of aqueous solutions, but the effects
of gadolinium and iodine concentrations on the overall volume
of aqueous solutions were negligible. Therefore, these differing
effects for different components within mixed compositions
could skew the results of quantitative material decomposition
and warrant further investigation.

The relatively low sensitivity and high specificity for gado-
linium compared with calcium and iodine were due to an under-
estimation of the gadolinium concentration (average error ¼
−1.6 mM or −0.25 mg∕mL, Table 3), which resulted in more

voxels within the selected VOI falling below the 5 mM threshold
used for the analysis of sensitivity and specificity. The voxel-
based classification analysis in this study is expected to
underestimate sensitivity, specificity, and AUC compared with
object-based classification analysis. Comparison of voxel-based
classification metrics between studies requires caution due to
dependence on the voxel size and reconstruction methods.
Nonetheless, the AUC for material decomposition of gado-
linium and iodine within mixed compositions was similar to
that previously reported for material decomposition of a single
discrete contrast agent using a similar voxel-based classification
analysis.26 The RMSE for material decomposition of gado-
linium and iodine within mixed compositions was also similar
to that previously reported for each single component.26,31

Therefore, the ability to decompose multiple mixed, or spatially
coincident, compositions with comparable accuracy to pure
discrete compositions is encouraging for potential preclinical
and clinical applications.

Estimated concentrations of calcium were more susceptible
to error caused by the influence of mixed compositions than
was gadolinium or iodine (Table 4). Gadolinium and iodine
exhibited a k-edge discontinuity within the observed photon
energy spectrum but calcium did not. Materials that lack
a k-edge discontinuity within the photon energy spectrum
typically exhibit similar attenuation profiles with only subtle
differences that are more difficult to resolve and thus pose a
greater challenge to material decomposition. Likewise, minor
errors in the estimated concentrations of calcium and gadolin-
ium due to the presence of iodine in mixed compositions
(Table 4) were mostly likely due to similarity in the attenuation
profiles since the attenuation profile of iodine lies in between
that of calcium and gadolinium. In both cases, the decomposi-
tion of calcium and iodine relied heavily on the measured
attenuation at low photon energies.

The decomposition of multiple, spatially coincident materi-
als lacking a k-edge discontinuity or with similar attenuation
profiles, which may depend heavily on low photon energy bins,
may be more challenging in clinical imaging of human subjects
than in this study. The feasibility of clinical translation will
depend on the type of image acquisition (e.g., CT versus mam-
mography), reconstruction methods, and detector performance.
In this study, the maximum number of photon energy bins (5)
and minimum photon energy bin bandwidth (10 keV) were
limited by the number of charge summing thresholds and spec-
tral resolution, respectively, of the photon-counting detector.
Continued progress in photon-counting detector technology is
anticipated to enable increased photon counts and higher spec-
tral resolution (e.g., Timepix),32 which will further improve

Table 4 The overall effects of each component in mixed compositions, and binary interactions, on the concentrations estimated by material
decomposition. Italicized p-values show statistically significant effects from the multiple regression model. Note that the primary effect of respective
each component (bold and italicize) in a single-factor model predicted more than 95%, 97%, and 98% of variability in the estimated concentration of
calcium (Ca), gadolinium (Gd), and iodine (I), respectively; therefore, other statistically significant effects were relatively minor.

Estimated concentrations

Components in mixed compositions

RMSE (%) R2
Ca Gd I Ca ×Gd Ca × I I ×Gd

Ca <0 .0001 <0 .01 <0 .0001 0.99 <0 .001 0.14 3.9 0.99

Gd 0.76 <0 .0001 <0 .05 0.75 0.28 0.28 6.4 0.98

I 0.62 0.28 <0 .0001 0.63 0.58 0.93 5.8 0.98
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the accuracy of material decomposition, especially for mate-
rials lacking a k-edge discontinuity, and accelerate clinical
translation.

Photon-counting spectral CT enabled the decomposition and
quantification of low concentrations of gadolinium and iodine
that were spatially coincident with high concentrations of
calcium. This result suggests that spectral CT may be used to
decompose and quantify low concentrations of contrast agents
that are spatially coincident with mineralized tissues,33 such as
breast microcalcifications,34,35 atherosclerotic plaque,15 and
bone.36,37 The ability to decompose and quantify spatially
coincident gadolinium and iodine further suggests that spectral
CT may be used for multicontrast imaging,23–25,38 including
perfusion, angiography, colonography, and/or tumor targeting.

5 Conclusions
Individual material components (Ca, Gd, and I) within mixed, or
spatially coincident, compositions were identified and quanti-
fied with high accuracy (AUC > 0.95, RMSE < 12%) using
photon-counting spectral CT and material decomposition by
MLE in the image domain. Thus, photon-counting spectral
CT enabled quantitative molecular imaging of multiple spatially
coincident contrast agent (gadolinium and iodine) and tissue
(calcium and water) compositions, which is not possible with
current clinical molecular imaging modalities, such as nuclear
imaging and MRI.

6 Appendix: Detailed Methods for Material
Decomposition

MLE was calibrated by a material basis matrix, C, an M × N
matrix of attenuation coefficients for each discrete material in
each energy bin, where M is the number of energy bins and N
is the number of materials to be decomposed. Attenuation is
assumed to be approximately linear for each material in each
photon energy bin. The measured effective attenuation within
the j-th voxel for the k-th energy bin is described by

EQ-TARGET;temp:intralink-;e001;63;352μjk ¼
XN
i¼1

ðμijk · xiÞ; (1)

whereN is the total number of materials to be identified, μi is the
mass attenuation coefficient of the i-th material, and xi is the
volume fraction (or fractional abundance) of the i-th material.
The estimated attenuation coefficient of each discrete material
(Ca, Gd, and I) in the k-th energy bin was determined for the
material basis matrix by multiple least squares linear regression
with known material concentrations as

EQ-TARGET;temp:intralink-;e002;63;232μk ¼ bo þ bixi þ bwaterxwater; (2)

where μk is the effective attenuation of voxels within the mea-
sured VOI, bo is the intercept, which was assumed to be zero,
bi is the estimated attenuation of the i-th material, and bwater is
the estimated attenuation of water. Elemental volume fractions
were estimated from known concentrations of materials in the
calibration phantom as

EQ-TARGET;temp:intralink-;e003;63;141vi ≈
ðmi∕ρiÞ

ðmi∕ρiÞ þ ðmwater∕ρwaterÞ
; (3)

where vi is the estimated volume fraction of the i-th material
(Ca, Gd, or I), mi and mwater are the masses of the i-th material
and water, respectively, and ρi and ρwater are the densities of the

i-th material and water, respectively, which were assumed to be
constant, such that vwater ≈ 1 − vi. The densities of calcium,
gadolinium, iodine, and water were taken as 1.54, 7.90, 4.93,
1.00 g∕cm3, respectively. The multivariate linear model of
Eq. (2) was then used to solve for the attenuation coefficients
by substituting the fractional abundance, xi, with the elemental
volume fraction of each material, vi, and μ̄k with the mean x-ray
attenuation of each material and concentration measured within
a 14.6mm3 cuboidal VOI in the calibration phantom. The multi-
variate model was repeated for each of the five energy bins to
complete the basis matrix (C).

Material decomposition of unknown concentrations of cal-
cium, gadolinium, iodine, and water sample phantom images
was performed by MLE using a quadratic programming func-
tion, quadprog, in MATLAB (v.9.0, Mathworks Inc.) and the
material basis matrix. Constrained MLE was chosen to mitigate
the large number of possible solutions to the linear system of
equations, which were constrained to satisfy both full additivity
and non-negativity. The volume fraction of materials in each
voxel of sample phantom images was estimated by minimizing
the following equation:

EQ-TARGET;temp:intralink-;e004;326;520minx 0.5 · xT · H · xþ fT · x; (4)

where x is a vector of volume fractions of length N, and

EQ-TARGET;temp:intralink-;e005;326;478H ¼ 2 · CT · C; (5)

EQ-TARGET;temp:intralink-;e006;326;449f ¼ −2 · CT · μM; (6)

where μM is a vector of length M containing the attenuation
values of the unknown sample in each energy bin, constrained
such that,

EQ-TARGET;temp:intralink-;e007;326;390A · x ≤ b; (7)

EQ-TARGET;temp:intralink-;e008;326;362Aeq · x ¼ beq; (8)

EQ-TARGET;temp:intralink-;e009;326;338A ¼

2
666666664

1 0 0

0 . .
.

0

0 0 1N
−1 0 0

0 . .
.

0

0 0 −1N

3
777777775
; (9)

where b is anN × 2 vector containingN ones andN zeros, Aeq is
a vector of length N comprised ones, and beq is equal to one.
Equation (7) limits the solution to remain between 0 and 1,
satisfying the non-negativity constraint. Equation (8) ensures
that the vector of volume fractions sums to 1 for each voxel,
satisfying the full additivity constraint. Volume fractions were
calculated for material in each unknown sample.

After material decomposition, the estimated material volume
fractions in unknown sample compositions were scaled to mM
concentration. The mean x-ray attenuation was determined for
known concentrations of each material composition in the cal-
ibration phantom for each energy bin. The mean attenuation val-
ues were then decomposed using constrained MLE for each of
material in the basis matrix. Estimated volume fractions were
correlated with the known concentrations (mM) in the calibra-
tion phantom for each material composition using linear least
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squares regression. The intercept, bo, was allowed to be non-
zero. Decomposed images were then scaled to mM concentra-
tions using this linear regression model to create concentration
maps for each material.
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