Hafnia (HfO_{2}) nanoparticles as an X-ray contrast agent and mid-infrared biosensor

Tracie L. McGinnity, a,c Owen Dominguez, b,d Tyler E. Curtis, a Prakash D. Nallathamby, a,c Anthony J. Hoffman, b,d and Ryan K. Roeder*a,b,c,d

The interaction of hafnium oxide (HfO_{2}) nanoparticles (NPs) with X-ray and mid-infrared radiation was investigated to assess the potential as a multifunctional diagnostic probe for X-ray computed tomography (CT) and/or mid-infrared biosensing. HfO_{2} NPs of controlled size were prepared by a sol–gel process and surface functionalized with polyvinylpyrrolidone, resulting in relatively spherical and monodispersed NPs with a tunable mean diameter in the range of ~7–31 nm. The X-ray attenuation of HfO_{2} NPs was measured over 0.5–50 mM concentration and compared with Au NPs and iodine, which are the most prominent X-ray contrast agents currently used in research and clinical diagnostic imaging, respectively. At clinical CT tube potentials >80 kVp, HfO_{2} NPs exhibited superior or similar X-ray contrast compared to Au NPs, while both exhibited significantly greater X-ray contrast compared to iodine, due to the favorable location of the k-shell absorption edge for hafnium and gold. Moreover, energy-dependent differences in X-ray attenuation enabled simultaneous quantitative molecular imaging of each agent using photon-counting spectral (multi-energy) CT. HfO_{2} NPs also exhibited a strong mid-infrared absorption in the Reststrahlen band from ~250–800 cm\(^{-1}\) and negative permittivity below 695 cm\(^{-1}\), which can enable development of mid-infrared biosensors and contrast agents, leveraging surface enhanced mid-infrared and/or phonon polariton absorption.

Introduction

Hafnium oxide or hafnia (HfO_{2}) nanoparticles (NPs) and thin films have been investigated for various applications including high-k gate dielectrics,\(^{1,2}\) scintillators,\(^{3,4}\) radiosensitizers,\(^{5,6}\) optical waveguides,\(^{7,8}\) and optical coatings,\(^{9,10}\) due to exhibiting a high dielectric constant (\(\varepsilon\)) of 25, high melting point (2758 °C), high atomic number (Z = 72), high density (9.7 g cm\(^{-3}\)), high index of refraction, transparency to visible light (5.3–5.9 eV band gap), and chemical stability. In particular, the high atomic number and electron density of HfO_{2} NPs promotes efficient X-ray absorption for use as a radioluminescent scintillator\(^{3,4}\) or radiosensitizer in cancer radiotherapy.\(^{5,6}\) Moreover, the polar crystalline structure and optical phonon energies of HfO_{2} result in a negative permittivity in the mid-infrared enabling localized surface phonon polaritons for use as optical sensors and materials.\(^{11,12}\) Therefore, HfO_{2} NPs might also be expected to be useful as an X-ray contrast agent in computed tomography (CT) and phononic material for surface enhanced mid-infrared absorption.

NPs comprising high-Z metals, such as gold,\(^{13–15}\) bismuth,\(^{16,17}\) tantalum,\(^{18,19}\) and tungsten,\(^{20}\) have gained recent interest as X-ray contrast agents due to enabling the delivery of a greater mass payload compared with molecular contrast agents (e.g., iodinated molecules and Gd-chelates) used clinically. Interestingly, simulations of the contrast-to-noise ratio and X-ray dose for contrast-enhanced CT with a number of prospective high-Z contrast agents – including iodine, gold, bismuth, gadolinium, and tungsten, among others – suggested that hafnium provided the best overall performance at clinical CT tube potentials.\(^{21,22}\) The k-shell absorption edge of hafnium (65.4 keV) is favorably located near the mean photon energy (and highest count rate) of the photon energy spectrum in clinical CT systems, which ranges from ~20 keV to peak tube potentials of 80–140 kVp (Fig. 1). Thus, HfO_{2} could provide improved X-ray contrast compared with current clinical contrast agents (iodine) and a lower-cost alternative to Au NPs (0.56 USD g\(^{-1}\) Hf vs. 39.47 USD g\(^{-1}\) Au\(^{23}\)). However, there has been no previous experimental investigation of HfO_{2} NPs as an X-ray contrast agent.
Noble metal NPs are able to scatter and absorb visible and infrared frequencies of light, enabling photonic and bio-photonic applications in these frequency ranges. Optical applications can benefit from using mid-infrared wavelengths because many molecules exhibit strong, characteristic absorption at these wavelengths. Coupling the benefits of strong and specific mid-infrared absorption with nanomaterials is promising for a new generation of photonic and biophotonic devices and applications, including biosensors and single molecule spectroscopy. However, the large permittivity of noble metal NPs, limits utility beyond the near-infrared. The excitation of surface phonon polariton modes in polar dielectrics enables applications in the mid-infrared that are analogous to plasmonic applications. The permittivity of HfO2 NPs is negative in the mid-infrared between the longitudinal and transverse optical phonon wavelengths, allowing excitation of sub-diffraction surface phonon polariton modes that are similar to those used in plasmonics, but at mid-infrared frequencies. Thus, HfO2 NPs could play an important role in the development of mid-infrared sensors based on surface enhanced mid-infrared absorption or phonon polariton absorption, and as contrast agents for mid-infrared imaging.

Results and discussion
HfO2 NP synthesis, surface modification, and characterization
HfO2 NPs of controlled size were prepared by a sol–gel process, calcining a polymerized complex at 500, 575, 650, 800, and 950 °C. The crystallographic phase and crystallite size was characterized by X-ray diffraction (XRD). All XRD peaks corresponded to monoclinic HfO2 (JCPDS 34-0104) with no evidence of second phases at the calcination temperatures investigated (Fig. 2). The crystallite size measured by XRD peak broadening increased with increased calcination temperature (Table 1), as expected due to particle growth. However, transmission electron microscopy (TEM) revealed that the as-prepared HfO2 NPs were highly agglomerated (Fig. 3). Moreover, the hydrodynamic diameter measured by dynamic light scattering (DLS) for as-prepared HfO2 NPs calcined at 575 °C was 225 (±74) nm, which reflected the presence of multi-particle agglomerates.

As-prepared HfO2 NPs were dispersed by surface functionalization with polyvinylpyrrolidone (PVP) and ultrasonication. The hydrodynamic diameter measured by DLS for PVP–HfO2 NPs calcined at 575 °C was 133 (±74) nm. TEM micrographs showed that PVP–HfO2 NPs were spherical and well-dispersed (Fig. 4). The measured NP diameter increased with increased calcination temperature ($p < 0.0001$, ANOVA) from ~7 nm at 500 °C to ~31 nm at 950 °C, and the size distribution was relatively monodispersed (Table 1). Differences were measured for HfO2 NPs and fit using a Lorentz multiple oscillator model to estimate the permittivity.
Control of NP size and dispersion is crucial for both X-ray contrast agents and optical biosensors used either in vivo and in vitro. HfO$_2$ NPs have been synthesized using various hydrothermal,$^{31-34}$ solvothermal,15,36 and sol–gel$^{37-39}$ methods. Sol–gel methods are advantageous for economical, low temperature synthesis of oxide NPs and thin films with controlled composition, size, and morphology. Previous studies for sol–gel derived HfO$_2$ NPs investigated reactant and surfactant concentrations,$^{37-39}$ but, surprisingly, had not investigated the ability to tune the NP size via the calcination temperature. The results of the present study showed an ability to tailor the HfO$_2$ NP size over a four-fold range of \sim7–31 nm at 500–950 °C (Table 1). Importantly, NPs in this size range are suitable for in vitro labeling, in vivo delivery and cellular internalization.15,40,41 Sol–gel derived HfO$_2$ NPs were previously surface modified by chemisorption of oleic acid to create hydrophobic instead of hydrophilic surfaces,38,42 but these studies appear to be the only that have investigated surface modification. The results of the present study showed that PVP served as an effective non-ionic, steric dispersant for HfO$_2$ NPs.

X-ray contrast

The X-ray attenuation of HfO$_2$ NPs calcined at 575 °C and surface functionalized with PVP was compared with Au NPs and iodine (iomeprol). Au NPs have become the most prominent NP X-ray contrast agent used in research and iodine is the most prominent X-ray contrast agent used in clinical diagnostic imaging.$^{13-15}$ Imaging phantoms were prepared comprising HfO$_2$ NPs, Au NPs, and iodine at concentrations ranging from 0.5 to 50 mM, as well as air and water controls for internal calibration of linear attenuation coefficients to Hounsfield units (HU). Each composition and concentration was dispersed in 1% agarose to maintain homogeneity and stability for imaging by multiple CT instruments over a period of months.

The phantoms were first imaged using a conventional laboratory micro-CT (Scanco µCT-80) operating at relatively low tube potentials (45 and 70 kVp) and high spatial resolution.
The X-ray attenuation of HfO2 NPs, Au NPs, and iodine increased linearly with molar concentration (p < 0.0001, ANCOVA). The measured X-ray attenuation rate (slope, HU mM⁻¹) of HfO2 NPs was greater than iodine but less than Au NPs (p < 0.0005, ANCOVA) at either tube potential.

X-ray attenuation increases linearly with increased mass or molar concentration of a contrast agent or any material, and is not affected by NP size. Therefore, the X-ray attenuation of different contrast agents can be directly compared at equal concentration or as an attenuation rate (HU mM⁻¹) as reported in Fig. 5. Both HfO2 and Au NPs exhibited significantly improved X-ray contrast compared to iodine, and Au NPs exhibited significantly greater contrast compared to HfO2 at the relatively low tube potentials (45 and 70 kVp) used in the laboratory micro-CT. However, X-ray attenuation also increases with decreased incident photon energy from the X-ray source for any material, unless an absorption edge is encountered for that material, due to a greater probability of photoelectric absorption with decreased photon penetration. The incident X-ray photon energy spectrum is controlled by setting the peak tube potential (kVp), which corresponds to the maximum photon energy in the spectrum, and beam filtration, which removes low energy photons (<15 keV), such that the mean photon energy is typically ~30–40% of peak tube potential. Iodine, hafnium, and gold exhibit a k-shell absorption edge at 33.2, 65.4, and 80.7 keV, respectively. Therefore, the X-ray attenuation of HfO2 and Au NPs decreased with increased tube potential (Fig. 5), due to little or no influence of the k-edges at photon energies less than 70 keV (Fig. 1). In contrast, the X-ray attenuation of iodine increased slightly with increased tube potential (Fig. 5), due to a greater number of high energy photons above the k-edge of iodine at 33.2 keV (Fig. 1). Importantly, the relatively low tube potentials (45 and 70 kVp) used in laboratory micro-CT systems produce a mean photon energy which is well below, and thus not optimal for leveraging, the k-edge of hafnium relative to gold and iodine. Thus, laboratory micro-CT systems do not reflect relative differences in the X-ray attenuation of the contrast agents when imaging higher tube potentials used clinically.

The same phantoms were, therefore, also imaged using a conventional clinical CT (Siemens SOMATOM Definition Flash) operating in single-source mode at higher tube potentials (80, 100, 120, and 140 kVp) and lower spatial resolution (~300 µm). The X-ray attenuation of HfO2 NPs, Au NPs, and iodine increased linearly with molar concentration (p < 0.0001, R² > 0.99), as expected. The effects of the group (composition), covariate (concentration), and interaction (slope) were all statistically significant at each tube potential (p < 0.0001, ANCOVA). At 80 kVp, differences in the measured X-ray attenuation rate (slope, HU mM⁻¹) between the contrast agents were not statistically significant (Fig. 6). However, at 100–140 kVp, HfO2 and Au NPs exhibited a greater X-ray attenuation rate compared to iodine (p < 0.005, ANCOVA), and at 100 kVp, HfO2 NPs exhibited a greater X-ray attenuation rate compared to Au NPs (p < 0.005, ANCOVA) (Fig. 6). The X-ray attenuation rate for each contrast agent decreased with increased peak tube potential (p < 0.001, ANCOVA), but the amount of the decrease was greatest for iodine and least for HfO2 NPs (Fig. 6).

At tube potentials greater than 80 kVp using clinical CT, both HfO2 and Au NPs exhibited significantly improved con-
The greater X-ray attenuation of both HfO2 and Au NPs compared to iodine at clinical tube potentials was due to the presence of a k-shell absorption edge for hafnium and gold at 65.4 and 80.7 keV, respectively, which affects a greater proportion of incident photons at higher tube potentials (Fig. 1). The improved contrast of Au NPs compared to iodine was previously reported and attributed to this same potentials (Fig. 1). The improved contrast of Au NPs compared to hafnium at 65.4 and 80.7 keV, respectively, which was obtained by dividing the spectra obtained with and without the decomposition of the contrast agents embedded in agarose as an additional control to demonstrate the decomposition of the contrast agents versus bone.

The same phantoms were, therefore, also imaged using a novel preclinical spectral CT (MARS Bioimaging) operating at 120 kVp and ~300 µm spatial resolution, but utilizing a photon-counting detector (Medipix3RX) to enable multi-energy imaging. Energy bins were set to 7.0–14.8, 14.8–33.1, 33.1–65.0, 65.0–80.1, and 80.1–120 keV in order to leverage the k-shell absorption edge of iodine (33.2 keV), hafnium (65.4 keV), and gold (80.7 keV). An excised rabbit femur was also embedded in agarose as an additional control to demonstrate the decomposition of the contrast agents versus bone.

Spectral CT enabled simultaneous color delineation and quantitative molecular imaging of the HfO2 NPs, Au NPs, and iodine contrast agents at 50 mM concentration, which is not possible using conventional CT due to relatively similar overall attenuation (Fig. 7). Thus, multi-energy imaging within the five selected energy bins enabled multi-agent or multi-material imaging due to differences in the energy-dependent X-ray attenuation of each material (Fig. 1). The contrast agents were also able to be clearly distinguished from bone and water, although there was a small amount of erroneous gold signal immediately adjacent to the bone likely due to beam hardening (Fig. 7). Note that a Au NP concentration of 50 mM can be readily achieved by targeted delivery and has been widely reported to be nontoxic, suggesting that these concentrations are suitable for in vivo preclinical imaging. Thus, novel contrast agents like HfO2 NPs and spectral CT may act synergistically to transform CT into a molecular imaging modality.

The combined results using a laboratory micro-CT, clinical CT, and novel photon-counting spectral CT suggest that HfO2 NPs have considerable potential as an X-ray contrast agent. However, future work must investigate surface functionalization strategies for biostability and active targeting, as well as cytocompatibility. An in vitro toxicological assessment of industrial HfO2 NPs concluded that HfO2 NPs are relatively non-toxic to living cells. An evaluation of the cytotoxicity of the HfO2 NPs prepared in this study is currently underway. Importantly, the utility of HfO2 NPs is not limited to X-ray contrast, but also includes strong mid-infrared absorption for potential photonic biosensing.

Optical properties

Transmission spectra of as-prepared HfO2 NPs calcined at 575 °C were measured under vacuum from the far- (red curve) to mid-infrared (blue curve) using FTIR (Fig. 8a). The NPs were sandwiched between two 2.5 µm-thick Mylar films for wide-band measurements; therefore, the transmission spectrum of the Mylar films is shown for comparison in the inset and the absorption bands characteristic of polyethylene terephthalate (Mylar) are indicated by gray shading. The HfO2 NP spectra were obtained by dividing the spectra obtained with and provide a lower cost alternative to Au NPs as an X-ray contrast agent which also outperforms iodine and performs comparably, if not advantageously, to Au NPs. Furthermore, energy-dependent differences in the X-ray attenuation of contrast agents can also enable multi-agent imaging using nascent spectral CT imaging methods.}

![Fig. 6](image_url)
without NPs to remove absorption from the thin Mylar films. Nonetheless, some artifacts remained in the NP spectra due to strong absorption in the thin films and are shown by gray shading (Fig. 8a). Importantly, the low transmittance from \(\sim 250\) to \(800\) cm\(^{-1}\) was due to strong optical absorption in the Reststrahlen band of HfO\(_2\) (Fig. 8a). In this spectral region, the permittivity of the NPs can be negative.

The mid-infrared transmission spectra of HfO\(_2\) NPs was also measured by sandwiching NPs between two KBr windows to enable the observation of absorptions due to optical phonon modes. HfO\(_2\) NPs exhibited five minima in the transmission spectra at 421, 521, 596, 679, and 766 cm\(^{-1}\) (Fig. 8b). The transmission spectrum was fit using a multiple-oscillator model (dashed red curve),\(^{29}\) which showed good agreement between the model and experimental data (Fig. 8b). The fit parameters were also in agreement with FTIR measurements of monoclinic HfO\(_2\) thin films and density functional perturbation theory calculations.\(^{29,51}\) The permittivity of HfO\(_2\) NPs was subsequently determined using the multiple-oscillator model (Fig. 8b, inset) and was negative below \(695\) cm\(^{-1}\) (14.4 µm). Therefore, HfO\(_2\) NPs were predicted to support local surface phonon polariton modes (\(\text{Re}(\epsilon)\approx -2\)) at several frequencies, which may be useful for optical biosensing applications leveraging surface enhanced mid-infrared or phonon polariton absorption.\(^{11}\)

Conclusions

HfO\(_2\) NPs exhibited strong absorption of X-ray and mid-infrared radiation suggesting utility as a multifunctional diagnostic probe for X-ray CT and/or mid-infrared biosensing. Spherical and monodispersed HfO\(_2\) NPs with a tunable mean diameter in the range of \(7-31\) nm, which is suitable for \textit{in vitro} labeling and \textit{in vivo} delivery, were prepared by a sol–gel process, calcining a polymerized complex at \(500-950\) °C, and were surface functionalized with polyvinylpyrrolidone. The X-ray attenuation (HU) of HfO\(_2\) NPs was measured over \(0.5-50\) mM concentration and compared with Au NPs and iodine, which are the most prominent X-ray contrast agents currently used in research and clinical diagnostic imaging, respectively. In a laboratory micro-CT operating at relatively low tube potentials (<80 kVp), both HfO\(_2\) and Au NPs exhibited significantly greater contrast (HU mM\(^{-1}\)) compared to iodine, and Au NPs also exhibited significantly greater contrast compared to HfO\(_2\), but the relatively low tube potentials used in a laboratory micro-CT did not take advantage of the \(k\)-edge of hafnium and were not reflective of clinical CT. In a clinical CT operating at higher tube potentials (>80 kVp,) HfO\(_2\) NPs exhibited superior or similar contrast compared to Au NPs, while both exhibited significantly greater contrast compared to iodine, due to the favorable location of the \(k\)-shell absorption edge for hafnium and to a lesser extent gold. Therefore, HfO\(_2\) NPs offer an alternative to Au NPs as an X-ray contrast agent which also outperforms iodine and performs comparably, if not advantageously, to Au NPs. Additionally, in a novel spectral CT operating at 120 kVp and utilizing a photon-counting detector, multi-energy imaging enabled simultaneous quantitative molecular imaging of HfO\(_2\) NPs, Au NPs, and iodine due to energy-dependent differences in the X-ray attenuation of each agent. HfO\(_2\) NPs also exhibited a strong mid-infrared absorption in the Reststrahlen band from \(\sim 250\) to \(800\) cm\(^{-1}\) and negative permittivity below \(695\) cm\(^{-1}\), which can support localized surface phonon polariton modes at several frequencies. Therefore, HfO\(_2\) NPs may also enable development of mid-infrared...

Fig. 7 Spectral CT (MARS Bioimaging) images of (clockwise from top) water, 50 mM Au NPs (red), 50 mM iodine (blue), a rabbit femur (white), and 50 mM HfO\(_2\) NPs (green). (a) A representative 2D grayscale image slice showing the inability of a conventional CT image to distinguish NP compositions, and the greater signal of bone compared to 50 mM concentrations. (b) A representative 2D spectral CT image slice showing clear, color delineation and quantitative molecular imaging of the contrast agent compositions at 50 mM concentration versus bone and water. (c) A 3D spectral CT reconstruction showing NP compositions versus bone.
biosensors and contrast agents, leveraging surface enhanced mid-infrared and/or phonon polariton absorption.

Experimental methods

HfO$_2$ nanoparticle (NP) synthesis and surface modification

HfO$_2$ NPs were prepared by a sol–gel process using a polymerized complex, adapting previously established methods. Aqueous reaction solutions were prepared by adding 0.208 M hafnium(IV) chloride, HfCl$_4$ (99.9%, Alfa Aesar, Ward Hill, MA), to 24 mL of 2.08 M citric acid (ACS reagent, Fisher Scientific, Pittsburgh, PA) and stirring overnight to ensure complete dissolution. 0.2 M ethylene glycol (ACS reagent, BDH Chemicals, Radnor, PA) was added to the solution under continuous stirring for 3 h at 90 °C to boil off excess water. The resulting gel was subsequently calcined for 2 h in a preheated furnace at 500, 575, 650, 800, and 950 °C to pyrolize the remaining organics and crystallize HfO$_2$ NPs. The resulting HfO$_2$ powder was ground using a mortar and pestle prior to further preparations and characterization. As-prepared HfO$_2$ NPs were surface functionalized by adding 1 wt% polyvinylpyrrolidone (PVP, $M_w = 40,000$, Sigma-Aldrich, St Louis, MO) to solutions containing 50–100 mM HfO$_2$ NPs and stirring overnight.

X-ray diffraction (XRD)

The crystallographic phase and crystallite size of as-prepared HfO$_2$ NPs was characterized by powder X-ray diffraction (XRD) (D8 Advance with Da Vinci, Bruker Corp., Madison, WI) using Cu K$_\alpha$ radiation generated at 40 kV and 40 mA. Powder samples were examined over 20–42° two-theta with a 0.01° step size, 2.0 s step time, and continuous sample rotation. The primary crystallite size was measured from peak broadening of the 110, 011, 111, 200, 020, and 002 reflections using the Scherrer equation,

$$\tau = \frac{K\lambda}{\beta \cos(\theta)}$$

where τ is the crystallite size (nm), K is a shape factor set equal to 0.9, λ is the X-ray wavelength (1.5406 nm), β is the full-width at half maximum (FWHM) peak intensity, and θ is the Bragg angle. The FWHM was measured after background subtraction and peak fitting with a Pearson 7 function (OriginPro 2016, OriginLab Corp., Northampton, MA). Instrument broadening was corrected using Warren’s method as,

$$\beta = \sqrt{\beta_{exp}^2 - \beta_{ad}^2}$$

where β is the corrected peak broadening, β_{exp} is the measured FWHM of the HfO$_2$ NP sample, and β_{ad} is the measured FWHM of a microscale HfO$_2$ powder standard (99.95% purity, Materion Advanced Chemicals Inc., Milwaukee, WI). Hall–Williamson analysis revealed that the effect of lattice strain was not statistically significant by least squares linear regression (JMP® 11.0, SAS Institute, Inc., Cary, NC) for each calcination temperature ($p > 0.27$); therefore, the crystallite size was measured as the mean (\pm standard deviation) from all XRD reflections.

Transmission electron microscopy (TEM)

TEM samples were prepared from dispersions of as-prepared HfO$_2$ NPs and PVP–HfO$_2$ NPs. As-prepared HfO$_2$ NPs were redispersed in deionized (DI) water at 25 mM. PVP–HfO$_2$ NPs were collected by centrifugation (Sorvall RC 6 Plus, Thermo Scientific, Wilmington, DE) at \sim17 000g for 1 h, redispersed in

Fig. 8 (a) Far- (red) and mid-infrared (blue) transmission spectrum for \sim22.5 nm HfO$_2$ NPs between two thin (2.5 µm) Mylar films. The inset shows the measured transmission spectrum for the Mylar films without NPs and the gray shading indicates regions of strong absorption that cause artifacts in the NP transmission spectrum. The low transmittance from \sim250 to 800 cm$^{-1}$ is due to strong optical absorption in the Reststrahlen band of HfO$_2$, where the permittivity can be negative. (b) A portion of the measured mid-infrared transmission spectrum for HfO$_2$ NPs between two KBr windows showing the measured spectrum (blue) and the best fit calculated by nonlinear least squares regression (dashed red). The inset shows the real (solid red) and imaginary (dot-dash red) parts of the multiple-oscillator permittivity extracted via the fitting process.
10 mL of ethanol at 5 mM, and subjected to ultrasonication (model 500, Fisher Scientific, Pittsburgh, PA) twice for 1.5 min pulsed at 40 cycles per min with a 67% duty cycle and 25% amplitude. TEM samples were prepared by pipetting a 10 µL aliquot onto a carbon-coated, copper grid (Model 01813-F, Ted Pella, Redding, CA) which was placed in an oven at 60 °C to evaporate the solvent, followed by pipetting and evaporating a second 10 µL aliquot. As-prepared and PVP–HfO₂ NP samples were imaged by TEM (JEOL 2011T, JEOL, Peabody, MA) at an accelerating voltage of 200 kV and a beam current of 102 mA. NP diameter and aspect ratio were calculated as the mean and ratio, respectively, of the measured prolate and equatorial particle diameter. The mean (±standard deviation) NP diameter and aspect ratio was measured for a sample of 100 NPs per experimental group.

Dynamic light scattering (DLS)

The hydrodynamic particle diameter distribution of as-prepared HfO₂ NPs and PVP–HfO₂ NPs calcined at 575 °C was measured using dynamic light scattering (DLS, Zetasizer Nano ZS90, Malvern Instruments Ltd, Worcestershire, UK). As-prepared HfO₂ NPs were dispersed in DI water at 5 mM concentration and allowed to settle overnight such that the stable supernatant was characterized by DLS. PVP–HfO₂ NPs were dispersed in DI water at 0.25 mM concentration and incubated in 2 mL of 4 M NaOH in DI water at 60 °C for 72 h followed by ultrasonication for 2 min pulsed at 35 cycles per min with a 60% duty cycle and 40% amplitude. Aliquots from this dispersion were subsequently diluted 100×, filtered (0.2 µm cellulose acetate membrane syringe filter, VWR, Radnor, PA), ultrasonicated again as described above, and characterized by DLS. The mean hydrodynamic diameter and standard deviation of the distribution were measured as the mean of three samples.

NP characterization statistical methods

Differences in the mean NP crystallite size (XRD), diameter (TEM), and aspect ratio (TEM) between calcination temperatures were compared using one-way analysis of variance (ANOVA) (JMP® 11.0). A log transform was applied to the aspect ratio data to provide a normal distribution for statistical analysis. **Post hoc** comparisons were performed using Tukey–Kramer HSD tests. Differences between the mean NP crystallite size (XRD) and diameter (TEM) at the same calcination temperature were compared using t-tests. The level of significance for all tests was set at p < 0.05.

Imaging phantom preparation

Imaging phantoms were prepared from PVP–HfO₂ NPs calcined at 575 °C and dispersed in DI water at 100 mM concentration by ultrasonication (model 500, Fisher Scientific, Pittsburgh, PA) for 1.5 min pulsed at 40 cycles per min with a 67% duty cycle and 20% amplitude. Serial dilutions containing 40, 20, 10, and 1 mM PVP–HfO₂ NPs were prepared from the 100 mM stock solution. A 2% agarose solution was prepared by dissolving agarose (molecular biology grade, Thermo Scientific, Rockford, IL) in DI water under microwave heating for 2 min. PVP–HfO₂ NP solutions were mixed with the 2% agarose solution in equal parts by volume to create solutions containing 0.5, 5, 10, 20, and 50 mM PVP–HfO₂ NPs dispersed in 1% agarose. Three 1 mL aliquots for each concentration were pipetted into separate 1.5 mL Eppendorf tubes and solidified rapidly on ice.

Imaging phantoms were also prepared from solutions of Au NPs and iodine for comparison to HfO₂ NPs. Au NPs were prepared with a mean particle diameter of ∼13 nm using the citrate reduction, as described in detail elsewhere. As-prepared Au NPs were surface functionalized by adding 1 wt% polyvinylpyrrolidone (PVP, Mw = 40 000, Sigma-Aldrich) to a 0.5 mM solution under stirring overnight and concentrated to a ∼100 mM stock solution by centrifugation at 19 000g for 1 h. A 100 mM iodine stock solution was prepared by dissolving iohexol (EP reference standard, Sigma-Aldrich) in DI water. Note that 1 mole of iohexol contains 3 moles of iodine. PVP–Au NP or iodine solutions were mixed with the 2% agarose solution in equal parts by volume to create solutions containing 0.5, 5, 10, 20, and 50 mM PVP–Au NPs or iodine dispersed in 1% agarose. Three 1 mL aliquots for each concentration were pipetted into separate 1.5 mL Eppendorf tubes and solidified rapidly on ice.

Gold concentrations in stock solutions and the accuracy of serial dilutions was verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES, Optima 7000, Perkin Elmer) after digesting samples in 3% aqua regia (3 parts HCl to 1 part HNO₃). Calibration curves were created by diluting certified standard gold solutions (Assurance Grade, SPEX CertiPrep, Metuchen, NJ). Gold concentrations targeted by serial dilution and those measured by ICP-OES were highly correlated by linear least squares regression (R² = 0.999) and differences were not statistically significant (p > 0.83, paired t-test).

X-ray computed tomography (CT)

Phantoms were imaged using a laboratory micro-CT (µCT-80, Scanco Medical AG, Brüttisellen, Switzerland) with a cone beam X-ray source, 0.5 mm thick aluminum filter, and circular scan at 800 ms integration time, 10 µm isotropic resolution, and two energy levels: 45 kVp at 177 µA and 70 kVp at 113 µA. X-ray attenuation was measured for each contrast agent composition and concentration, as well as air and water control samples, within a cylindrical volume-of-interest (VOI), 0.72 cm in diameter, over 10 image slices (10 µm thickness) centered within the Eppendorf tube, corresponding to a 4.1 µL sample volume.

The same phantoms were also imaged using a clinical dual-energy CT (SOMATOM Definition Flash, Siemens, Malvern, PA) in single source acquisition mode with a cone beam X-ray source, bowtie filter, 0.4 mm tin filter, and helical scan at multiple energy levels: 80, 100, 120, and 140 kVp at an effective current of 85 mAs. Images were acquired using the inner ear ultra-high resolution (InnerEarUHR) protocol with a 512 × 512 matrix, 16 × 0.3 mm field of view, and 2 mm slice thickness. The reconstruction kernel was U75u very sharp ASA.
X-ray attenuation was measured for each contrast agent composition and concentration, as well as air and water control samples, within a cylindrical VOI, 0.32 cm in diameter, over 7 image slices (2 mm thickness) centered within the Eppendorf tube, corresponding to a 112.6 µL sample volume.

Measured linear attenuation coefficients (μ) were converted to Hounsfield units (HU) using an internal sample calibration with the mean linear attenuation coefficients measured for air (−1000 HU) and water (0 HU). The X-ray attenuation of the HfO2 NPs, Au NPs, and iodine was reported in HU as the mean (±standard deviation) of three replicates for each concentration and plotted as a function of concentration. Differences between contrast agents and tube potentials were examined by comparing attenuation rates (HU mM−1) between contrast agents and tube potentials were examined by analysis of covariance (ANCOVA) using a Bonferroni correction for multiple pairwise comparisons. The level of significance for all tests was set at p < 0.05. Note that the background attenuation due to agarose in the sample phantoms was negligible as the difference in linear attenuation as a function of tube potential between water and 1% agarose was not statistically significant for either the laboratory micro-CT or the clinical CT (p > 0.50, ANCOVA).

Photon-counting spectral X-ray CT

The same phantoms imaged by conventional X-ray CT were also imaged using a preclinical spectral CT (MARS Bioimaging Ltd, Christchurch, NZ) equipped with a photon-counting detector comprising a CdZnTe semiconductor ball-bonded to the Medipix3RX (CERN, Geneva, Switzerland) application-specific integrated circuit. Images were acquired using a conventional polychromatic X-ray source (SB-120-350, Source-Ray, Inc., Ronkonkoma, NY) operating at 120 kVp and 18 µA with a 1.96 mm thick aluminum filter, and a continuous helical scan with a circular field of view 40 mm in diameter, 200 ms integration time, and 100 µm isotropic voxel size. An excised rabbit femur was also embedded in 1% agarose and imaged as an additional control sample for comparison. The photon-counting detector enabled simultaneous image acquisitions within multiple energy bins, including 7.0–14.8, 14.8–33.1, 33.1–65.0, 65.0–80.1, and 80.1–120 keV. These windows were chosen to leverage the k-shell absorption edge of iodine (33.2 keV), hafnium (65.4 keV), and gold (80.7 keV). Quantitative material decomposition (spectral unmixing) was performed using a quadratic programming algorithm in Matlab (v8.5, Mathworks, Natick, MA) which was calibrated by the measured X-ray attenuation of 50 mM NP concentrations, a bone mimicking composition containing 40 vol% hydroxyapatite, acrylic plastic, 1% agarose, and water. The fractional abundance of gold, hafnium, and iodine were then assigned to RGB channels, respectively, and scaled to mM concentrations. 2D image slices and 3D reconstructions were produced using MARSvision software (MARS Bioimaging Ltd).

Fourier transform infrared (FTIR) spectroscopy

The transmission spectra of as-prepared HfO2 NPs calcined at 575 °C were characterized under vacuum by FTIR (Vertex 80v, Bruker Corp., Billerica, MA). Room-temperature DLaTGS detectors with mid-infrared and far-infrared transparent windows were used with KBr and Mylar beamsplitters to measure spectra in the mid- and far-infrared, respectively. HfO2 NPs were sandwiched between 2.5 µm thick Mylar films and KBr windows for broadband and mid-IR measurements, respectively. The average of 1000 collected spectra was reported using 4 cm−1 spectral resolution. The background was measured and accounted in the transmittance results.

The mid-infrared transmission spectra measured using the KBr windows were numerically fit via a nonlinear least-squares process using a multiple-oscillator model for the frequency-dependent permittivity and transfer matrix code to simulate the transmission. The permittivity is given by,

$$\varepsilon(\nu) = A^2 + C\nu^2 + \sum_k \frac{\nu_{pk}^2}{\nu^2 - i\gamma_k \nu}$$

where ε is the permittivity, A and C are constants from the Cauchy formula, ν is frequency, νpk is the plasma frequency, ν0k is the resonance frequency, γk is the dampening coefficient, and k is the phonon mode.

Acknowledgements

This work was supported the National Science Foundation (NSF DMR-1309587 and ECCS-1420176), Defense Advanced Research Projects Agency (DARPA-14-56-A2P-PA-055), and an Engineering Novel Solutions to Cancer’s Challenges at the Interdisciplinary Interface (ENSCCII) Training Grant (TLM) from the Walther Cancer Foundation. The authors acknowledge the Notre Dame Materials Characterization Facility for XRD, the Notre Dame Integrated Imaging Facility (NDIIF) for electron microscopy, the Notre Dame Center for Environmental Science and Technology (CEST) for ICP-OES, and the St. Joseph Regional Medical Center (Mishawaka, IN) for clinical CT.

References

3. C. LeLuyer, M. Villanueva-Ibañez, A. Pillonnet and C. Dujardin, HfO2-X (X=Eu3+, Ce3+, Y3+) sol gel powders for

